Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Consider parametric models that are too complicated to allow calculation of a likelihood but from which observations can be simulated. We examine parameter estimators that are linear functions of a possibly large set of candidate features. A combination of simulations based on a fractional design and sets of discriminant analyses is then used to find an optimal estimator of the vector parameter and its covariance matrix. The procedure is an alternative to the approximate Bayesian computation scheme. © 2012 Biometrika Trust.

Original publication

DOI

10.1093/biomet/ass030

Type

Journal article

Journal

Biometrika

Publication Date

01/09/2012

Volume

99

Pages

741 - 747