Genome-wide association studies (GWAS) have discovered many risk variants for type 2 diabetes. However, estimates of the contributions of risk variants to type 2 diabetes predisposition are often based on highly selected case-control samples, and reliable estimates of population-level effect sizes are missing, especially in non-European populations.The individual and cumulative effects of 59 established type 2 diabetes risk loci were measured in a population-based China Kadoorie Biobank (CKB) study of 93,000 Chinese adults, including >7,100 diabetes cases.Association signals were directionally consistent between CKB and the original discovery GWAS: of 56 variants passing quality control, 48 showed the same direction of effect (binomial test, p = 2.3 × 10(-8)). We observed a consistent overall trend towards lower risk variant effect sizes in CKB than in case-control samples of GWAS meta-analyses (mean 19-22% decrease in log odds, p ≤ 0.0048), likely to reflect correction of both 'winner's curse' and spectrum bias effects. The association with risk of diabetes of a genetic risk score, based on lead variants at 25 loci considered to act through beta cell function, demonstrated significant interactions with several measures of adiposity (BMI, waist circumference [WC], WHR and percentage body fat [PBF]; all p interaction < 1 × 10(-4)), with a greater effect being observed in leaner adults.Our study provides further evidence of shared genetic architecture for type 2 diabetes between Europeans and East Asians. It also indicates that even very large GWAS meta-analyses may be vulnerable to substantial inflation of effect size estimates, compared with those observed in large-scale population-based cohort studies.Details of how to access China Kadoorie Biobank data and details of the data release schedule are available from .


Journal article



Publication Date





1446 - 1457


Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.


China Kadoorie Biobank Collaborative Group