Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although genome-wide association studies have uncovered single-nucleotide polymorphisms (SNPs) associated with complex disease, these variants account for a small portion of heritability. Some contribution to this 'missing heritability' may come from copy-number variants (CNVs), in particular rare CNVs; but assessment of this contribution remains challenging because of the difficulty in accurately genotyping CNVs, particularly small variants. We report a population-based approach for the identification of CNVs that integrates data from multiple samples and platforms. Our algorithm, cnvHap, jointly learns a chromosome-wide haplotype model of CNVs and cluster-based models of allele intensity at each probe. Using data for 50 French individuals assayed on four separate platforms, we found that cnvHap correctly detected at least 14% more deleted and 50% more amplified genotypes than PennCNV or QuantiSNP, with an 82% and 115% improvement for aberrations containing <10 probes. Combining data from multiple platforms additionally improved sensitivity.

Original publication




Journal article


Nat Methods

Publication Date





541 - 546


Chromosome Mapping, Chromosomes, Human, Pair 1, Databases, Factual, Haplotypes, Humans, Nucleic Acid Amplification Techniques, Polymorphism, Single Nucleotide, Reproducibility of Results