Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biases in systematic reviews and meta-analyses may be examined in 'meta-epidemiological' studies, in which the influence of trial characteristics such as measures of study quality on treatment effect estimates is explored. Published studies to date have analysed data from collections of meta-analyses with binary outcomes, using logistic regression models that assume that there is no between- or within-meta-analysis heterogeneity. Using data from a study of publication bias (39 meta-analyses, 394 published and 88 unpublished trials) and language bias (29 meta-analyses, 297 English language trials and 52 non-English language trials), we compare results from logistic regression models, with and without robust standard errors to allow for clustering on meta-analysis, with results using a 'meta-meta-analytic' approach that can allow for between- and within-meta-analysis heterogeneity. We also consider how to allow for the confounding effects of different trial characteristics. We show that both within- and between meta-analysis heterogeneity may be of importance in the analysis of meta-epidemiological studies, and that confounding exists between the effects of publication status and trial quality.

Original publication




Journal article


Stat Med

Publication Date





1513 - 1524


Bias, Epidemiologic Methods, Humans, Logistic Models, Meta-Analysis as Topic, Research Design, Statistics as Topic, Treatment Outcome