Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Rare coding variants that significantly impact function provide insights into the biology of a gene1-3. However, ascertaining their frequency requires large sample sizes4-8. Here, we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. 23% of the Regeneron Genetics Center Million Exome data (RGC-ME) comes from non-European individuals of African, East Asian, Indigenous American, Middle Eastern, and South Asian ancestry. This catalogue includes over 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss-of-function, we identify 3,988 loss-of-function intolerant genes, including 86 that were previously assessed as tolerant and 1,153 lacking established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions depleted of missense variants despite being tolerant to pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this important resource of coding variation from the RGC-ME accessible via a public variant allele frequency browser.

Original publication

DOI

10.1038/s41586-024-07556-0

Type

Journal article

Journal

Nature

Publication Date

20/05/2024