Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objective: An understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission in schools is important. It is often difficult, using epidemiological information alone, to determine whether cases associated with schools represent multiple introductions from the community or transmission within the school. We describe the use of whole genome sequencing (WGS) in multiple schools to investigate outbreaks of SARS-CoV-2 in the pre-Omicron period. Study Design: School outbreaks were identified for sequencing by local public health units based on multiple cases without known epidemiological links. Cases of SARS-CoV-2 from students and staff from 4 school outbreaks in Ontario underwent WGS and phylogenetic analysis. The epidemiological clinical cohort data and genomic cluster data are described to help further characterize these outbreaks. Results: A total of 132 positive SARS-CoV-2 cases among students and staff from 4 school outbreaks were identified with 65 (49%) of cases able to be sequenced with high-quality genomic data. The 4 school outbreaks consisted of 53, 37, 21 and 21 positive cases; within each outbreak there were between 8 and 28 different clinical cohorts identified. Among the sequenced cases, between 3 and 7 genetic clusters, defined as different strains, were identified in each outbreak. We found genetically different viruses within several clinical cohorts. Conclusions: WGS, together with public health investigation, is a useful tool to investigate SARS-CoV-2 transmission within schools. Its early use has the potential to better understand when transmission may have occurred, can aid in evaluating how well mitigation interventions are working and has the potential to reduce unnecessary school closures when multiple genetic clusters are identified.

Original publication

DOI

10.1097/INF.0000000000003834

Type

Journal article

Journal

Pediatric Infectious Disease Journal

Publication Date

01/04/2023

Volume

42

Pages

324 - 331