Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.

Original publication

DOI

10.1038/s41586-021-03779-7

Type

Journal article

Journal

Nature

Publication Date

08/2021

Volume

596

Pages

393 - 397

Keywords

Adult, Aging, Alleles, Animals, Bone and Bones, Checkpoint Kinase 1, Checkpoint Kinase 2, Diabetes Mellitus, Type 2, Diet, Europe, Far East, Female, Fertility, Fragile X Mental Retardation Protein, Genetic Predisposition to Disease, Genome-Wide Association Study, Healthy Aging, Humans, Longevity, Menopause, Menopause, Premature, Mice, Mice, Inbred C57BL, Middle Aged, Ovary, Primary Ovarian Insufficiency, Uterus