Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Myopia is one of the most common ocular disorders in the world, yet the genetic etiology of the disease remains poorly understood. Specialized founder populations, such as the Pennsylvania Amish, provide the opportunity to utilize exclusive genomic architecture, like unique haplotypes, to better understand the genetic causes of myopia. We perform genetic linkage analysis on Pennsylvania Amish families that have a strong familial history of myopia to map any potential causal variants and genes for the disease. 293 individuals from 25 extended families were genotyped on the Illumina ExomePlus array and merged with previous microsatellite data. We coded myopia affection as a binary phenotype; myopia was defined as having a mean spherical equivalent (MSE) of less than or equal to - 1 D (diopters). Two-point and multipoint parametric linkage analyses were performed under an autosomal dominant model. When allowing for locus heterogeneity, we identified two novel genome-wide significantly linked variants at 12q15 (heterogeneity LOD, HLOD = 3.77) in PTPRB and at 8q21.3 (HLOD = 3.35) in CNGB3. We identified further three genome-wide significant variants within a single family. These three variants were located in exons of SLC6A18 at 5p15.33 (LODs ranged from 3.51 to 3.37). Multipoint analysis confirmed the significant signal at 5p15.33 with six genome-wide significant variants (LODs ranged from 3.6 to 3.3). Further suggestive evidence of linkage was observed in several other regions of the genome. All three novel linked regions contain strong candidate genes, especially CNGB3 on 8q21.3, which has been shown to affect photoreceptors and cause complete color blindness. Whole genome sequencing on these regions is planned to conclusively elucidate the causal variants.

Original publication




Journal article


Hum Genet

Publication Date





339 - 354


Amish, Child, Child, Preschool, Chromosomes, Human, Pair 12, Chromosomes, Human, Pair 5, Chromosomes, Human, Pair 8, Family, Female, Gene Frequency, Genetic Linkage, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Myopia, Pennsylvania, Polymorphism, Single Nucleotide, Quantitative Trait Loci