Slides presented to the CHM Alteplase Expert Working Group

Slides 2-27: Dr Jonathan Emberson (20.11.14) Slides 29-67: Professor Colin Baigent (14.1.15) Slides 69-102: Professor Colin Baigent (30.6.15) Meta-analysis of individual patient data from the randomised trials assessing alteplase after acute ischaemic stroke

Jonathan Emberson, PhD

Associate Professor, Nuffield Department of Population Health, University of Oxford, UK

On behalf of the Stroke Thrombolysis Trialists' Collaboration

FUNDING: UK Medical Research Council, British Heart Foundation, University of Glasgow, University of Edinburgh

STT authors' disclosures (Lancet, August 6th 2014)

CB, LB, and JE have not accepted fees, honoraria, or paid consultancies but are involved in clinical trials of lipid-modifying treatment funded by Merck to the University of Oxford, with the University the trial sponsor in all cases. KRL has received speaker fees from and has served on the data monitoring committee of trials for Boehringer Ingelheim; his department has received research grant support from Genentech. GA has received research grant support from Lundbeck, fees for consultancy and advisory board membership from Lundbeck, Covidien, Codman, and Genentech, fees for acting as an expert witness, and owns stock in iSchemaView. EB is employed by Boehringer Ingelheim. SD has received honoraria from Boehringer Ingelheim, EVER Pharma, and Sanofi and has received fees for consultancy and advisory board membership from Boehringer Ingelheim and Sanofi. GD has received research grant support from the NHMRC (Australia) and honoraria from Pfizer and Bristol-Myers Squibb. JG has received fees for consultancy and advisory board membership from Lundbeck. RvK has received speaker fees and honoraria from Penumbra and Lundbeck. RIL has received honoraria from Boehringer Ingelheim. JMO has received speaker fees from Boehringer Ingelheim. MP has received travel support from Boehringer Ingelheim. BT has received honoraria from Pfizer. DT has received speaker fees and fees for consultancy and advisory board membership from Boehringer Ingelheim and Bayer. KT has received research grant support from the Ministry of Health, Labour, and Welfare of Japan, and speaker fees from Mitsubishi Tanabe Pharma. JW has received research grant support from the UK Medical Research Council and from Boehringer Ingelheim to the University of Edinburgh for a research scanner bought more than 10 years ago. WW has received research grant support from the UK Medical Research Council. PS has received honoraria for lectures which were paid to the department from Boehringer Ingelheim. WH has received research grant support from Boehringer Ingelheim, and speaker fees and fees for consultancy and advisory board membership from Boehringer Ingelheim. PL, TB, GC, GH, MKa, MKo, ML, GM, NW, and GJdZ declare no competing interests.

The Stroke Thrombolysis Trialists' Collaboration

- Collaboration between trialists and meta-analysts, set up prior to knowledge of the results from the Third International Stroke Trial (IST-3)
- Statistical analysis plan published in *Int J Stroke 2013*

9 trials including 6756 randomized patients
– ATLANTIS A/B, ECASS I/II/III, EPITHET, IST-3, NINDS A/B

Primary pre-specified aims

- The extent to which treatment delay modifies the effect of rt-PA on stroke outcome
- The extent to which age or stroke severity independently modify these effects
- The effects of rt-PA on risk of sICH and on mortality

Pre-specified outcomes

- Primary efficacy
 - Modified Rankin Scale (mRS) 0/1 at 3-6 months post stroke

- Safety endpoints
 - 90-day mortality
 - Symptomatic intracranial haemorrhage (sICH)
 - Parenchymal haemorrhage of type 2 (PH2) within 7 days
 - SITS-MOST definition of PH2 type haemorrhage within 36 hrs
 - Fatal ICH within 7 days

Pre-specified methods: 1-stage meta-analysis

- Primary outcome: mRS 0-1 vs 2-6
 - Multivariable (unconditional) logistic regression models stratified by trial and adjusted for:
 - treatment allocation
 - treatment delay, age and stroke severity
 - 2-way interactions between treatment allocation and each of the potential effect-modifiers

• 90-day mortality

- Equivalent Cox regression models
- All analyses are intention-to-treat

Baseline characteristics

	Trial		Randomized treatment allocation	
	IST-3 (n=3035)	8 previous trials (n=3721)	rt-PA (n=3391)	Control (n=3365)
Treatment delay (hours)	4.2 (1.2)	3.9 (1.2)	4.0 (1.2)	4.0 (1.2)
≤3	20	25	23	23
>3, ≤4.5	38	44	40	42
>4.5	42	30	36	35
Age (years)	77 (12)	66 (12)	71 (13)	71 (13)
≤80	47	97	74	75
>80	53	3	26	25
Stroke severity (NIHSS)	12 (6.9)	12 (6.2)	12 (6.6)	12 (6.5)

Effect on mRS 0-1 by treatment delay

Slope not significantly altered by age or stroke severity

Effect on mRS 0-1 by treatment delay

Effect on mRS 0-1 between 3 and 4.5 hrs

Trial	Allocated alteplase (n=1375)	Allocated control (n=1437)
ECASS I	42	35
ECASS II	52	40
ECASS III	218	178
ATLANTIS A	2	4
ATLANTIS B	49	52
EPITHET	3	3
IST-3	119	120
Total	485 (35%)	432 (30%)

Effect on mRS 0-1 by age and stroke severity

Effect on mRS by treatment delay (alternative definitions of 'good' outcome)

Treatment delay (hours)

Symptomatic ICH and 90-day mortality

	rt-PA	Control	RR (95% CI)
Number randomized	3391	3365	
Intracranial haemorrhage			
- PH2 at 7 days	231 (6.8%)	44 (1.3%)	5.55 (4.01 – 7.70)
- SITS-MOST at 36 hours	124 (3.7%)	19 (0.6%)	6.67 (4.11 – 10.8)
- Fatal ICH (within 7 days)	91 (2.7%)	13 (0.4%)	7.14 (3.98 – 12.8)
Death within 90 days	608 (17.9%)	556 (16.5%)	1.11 (0.99 – 1.25)

Effect on sICH (PH2 definition)

Effect on sICH (SITS-MOST definition)

Effect on fatal ICH within 7 days

Effect on 90-day mortality by period of follow-up

* Includes 91 vs 13 deaths from ICH and 191 vs 191 deaths from other causes

Effect on 90-day mortality by treatment delay

What does all this mean for a typical group of 100 stroke patients?

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()

Suppose that 25 would have had a good stroke outcome (mRS 0-1) <u>without</u> rt-PA and 6 would have died within the first week

If they had all been given rt-PA within 3 hours...

...the number recovering rises to about 35 ...but 2 extra would die from ICH within 7 days

- rt-PA improves the odds of surviving with no significant disability when delivered within 4.5 hours of stroke onset, including among patients aged >80 years
- Earlier treatment results in bigger proportional benefits
- rt-PA increases the early risk of death from ICH, but has no significant effect on other causes of early death
- Among those treated earlier, there is a suggestion that this early hazard may be followed by later mortality benefits

SUPPLEMENTARY SLIDES

Effect on mRS 0-1 by treatment delay, age and stroke severity

Effect on mRS 0-1 by age, at different treatment delays

Test for whether age modifies the interaction between treatment delay and treatment effect: p-value=0.08

Age and stroke severity versus treatment delay

Stroke severity and treatment delay versus age

Age and treatment delay versus stroke severity

Additional analyses of the STT dataset

Colin Baigent Professor of Epidemiology Co-chair, STT Collaboration Deputy Director, CTSU, University of Oxford

BENEFIT VS HAEMORRHAGIC STROKE RISK ACCORDING TO STROKE SEVERITY

Joint estimation of the "treatment-modifying effects" of delay, age and stroke severity

- Simple consideration of each characteristic in turn may be misleading (due to the correlation between the three characteristics)
- Multivariable (unconditional) logistic regression models stratified by trial and adjusted for:
 - treatment allocation
 - treatment delay, age and stroke severity
 - 2-way interactions between treatment allocation and each of the potential effect-modifiers
 - 2-sided p-values <0.05 considered nominally significant

Age vs. treatment delay

Age vs. severity

Severity vs. treatment delay

BENEFITS

Relative odds of a good outcome (mRS 0-1) by treatment delay, age and stroke severity

CONFIDENTIAL: NOT FOR PUBLICATION OR CITATION
Relative odds of a good outcome (mRS 0-1) by treatment delay, age and stroke severity

Relative odds of a good outcome (mRS 0-1) by treatment delay, age and stroke severity

Relative odds of a good outcome (mRS 0-1) by treatment delay and stroke severity

Relative odds of a good outcome (mRS 0-1) by time to treatment

* Estimates derived from a model including interactions between rt-PA and each treatment delay category # The "conventional" subgroup result in the >4.5 hour category is 1.10 (95% CI 0.93 – 1.31)

"Conventional" meta-analysis

Table 1. Effect of rt-PA on symptomatic andfatal intracranial haemorrhage

	rt-PA	Control	OR (95% CI)*
Number randomized	3391	3365	
SICH (PH2 at 7 days)	231 (6.8%)	44 (1.3%)	5.55 (4.01 – 7.70)
SICH (SITS-MOST at 24-36 hours)	124 (3.7%)	19 (0.6%)	6.67 (4.11 – 10.84)
Fatal ICH (within 7 days)	91 (2.7%)	13 (0.4%)	7.14 (3.98 – 12.79)

* Trial stratified odds ratio adjusted only for treatment allocation SICH: symptomatic intracranial haemorrhage, PH2: parenchymal haemorrhage type 2;

Effect of rt-PA on SICH at 7 days (PH2) by treatment delay, age and stroke severity

	rt-PA (n=3391)	Control (n=3365)		OR (95% CI)
Treatment dela	у			
≤3 hours	51/787 (6.5%)	7/762 (0.9%)		7.43 (3.34 - 16.52)
$>3, \leq 4.5$ hours	82/1375 (6.0%)	21/1437 (1.5%)		4.52 (2.77 - 7.36)
>4.5 hours	98/1229 (8.0%)	16/1166 (1.4%)		6.26 (3.66 - 10.72)
Age				
≤ 80 years	153/2512 (6.1%)	27/2515 (1.1%)		6.20 (4.09 - 9.38)
>80 years	78/879 (8.9%)	17/850 (2.0%)		4.80 (2.81 - 8.20)
Baseline NIHSS	8			
0-4	10/345 (2.9%)	1/321 (0.3%)		→ 10.35 (1.32 - 81.41)
5-10	65/1281 (5.1%)	8/1252 (0.6%)		8.24 (3.94 - 17.27)
11-15	63/794 (7.9%)	7/808 (0.9%)		9.96 (4.53 - 21.92)
16-21	54/662 (8.2%)	21/671 (3.1%)	_	2.76 (1.64 - 4.63)
≥22	39/309 (12.6%)	7/313 (2.2%)		6.07 (2.66 - 13.83)
All patients	231/3391 (6.8%)	44/3365 (1.3%)		5.55 (4.01 - 7.70)
		0.5	1 2 4 8 16	32
IFIDENTIAL: NOT	FOR PUBLICATION O	R CITATION rt-PA bette	er rt-PA worse	e

Effect of rt-PA on SICH at 7 days (PH2) by treatment delay, age and stroke severity (adjusted for all 3 treatment interactions)

Effect of rt-PA on SICH at 24-36 hours (SITS-MOST) by treatment delay, age and stroke severity

	rt-PA (n=3391)	Control (n=3365)	OR (95% Cl	I)
Treatment dela	у			
≤ 3 hours	30/787 (3.8%)	3/762 (0.4%)	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	.34)
>3, ≤4.5 hours	43/1375 (3.1%)	8/1437 (0.6%)	5.98 (2.80 - 12	.78)
>4.5 hours	51/1229 (4.1%)	8/1166 (0.7%)	6.22 (2.94 - 13	.17)
Age				
≤ 80 years	88/2512 (3.5%)	14/2515 (0.6%)	6.57 (3.73 - 11.	.59)
>80 years	36/879 (4.1%)	5/850 (0.6%)	— — — — — — — — — —	.50)
Baseline NIHSS	6			
0-4	6/345 (1.7%)	1/321 (0.3%) —	• • • • • • 6.02 (0.72 - 50	.30)
5-10	40/1281 (3.1%)	5/1252 (0.4%)	7.93 (3.12 - 20	.17)
11-15	37/794 (4.7%)	2/808 (0.2%)	→ 19.63 (4.71 - 81	.77)
16-21	26/662 (3.9%)	8/671 (1.2%)	3.38 (1.52 - 7	.53)
≥22	15/309 (4.9%)	3/313 (1.0%)	• 5.05 (1.45 - 17)	.66)
All patients	124/3391 (3.7%)	19/3365 (0.6%)	6.67 (4.11 - 10.	.84)
		0.5	1 2 4 8 16 32	
		R CITATION rt-PA bette	r rt-PA worse	

Effect of rt-PA on SICH at 24-36 hours (SITS-MOST) by treatment delay, age and stroke severity (adjusted for all 3 treatment interactions)

Effect of alteplase on fatal ICH at 7 days by treatment delay, age and stroke severity

	rt-PA (n=3391)	Control (n=3365)		OR (95% CI)
Treatment de	elay (hours)			
≤3	22/787 (2.8%)	2/762 (0.3%)		10.86 (2.54 - 46.41)
>3,≤4.5	35/1375 (2.5%)	7/1437 (0.5%)	e <u></u>	5.63 (2.49 - 12.76)
>4.5	34/1229 (2.8%)	4/1166 (0.3%)		8.16 (2.88 - 23.11)
Age (years)				
≤ 8 0	59/2512 (2.3%)	9/2515 (0.4%)		6.93 (3.42 - 14.02)
>80	32/879 (3.6%)	4/850 (0.5%)		7.95 (2.79 - 22.60)
Baseline NIH	ISS			
0-4	3/345 (0.9%)	0/321 (0.0%)		NE
5-10	20/1281 (1.6%)	5/1252 (0.4%)		3.90 (1.46 - 10.44)
11-15	23/794 (2.9%)	1/808 (0.1%)		24.14 (3.25 - 179.32)
16-21	24/662 (3.6%)	5/671 (0.7%)	-	5.00 (1.89 - 13.20)
≥22	21/309 (6.8%)	2/313 (0.6%)	$ \longrightarrow $	10.94 (2.54 - 47.15)
All patients	91/3391 (2.7%)	13/3365 (0.4%)		7.14 (3.98 - 12.79)
		Γ		
		0.5	1 2 4 8 16 32) -
		rt-PA be	tter rt-PA wors	se

Effect of alteplase on fatal ICH at 7 days by treatment delay, age and stroke severity (adjusted for all 3 treatment interactions)

Global test of all interactions: χ^2_4 =0.37 (p=0.98)

MORTALITY

90 day mortality

Global test of all interactions: χ^2_4 =1.35 (p=0.85)

<u>Average</u> effect of rt-PA on 90-day mortality by treatment delay (Lancet 2014)

Effect of rt-PA on deaths due to <u>ICH</u> and deaths due to <u>other causes</u> within the first 90 days (would need post 1-week cause-specific mortality data to be provided)

* Estimated by Cox proportional hazards regression stratified by trial (and adjusted only for Rx allocation) CONFIDENTIAL: NOT FOR PUBLICATION OR CITATION

Effect of rt-PA on mortality during the first 90 days by treatment delay and period of follow-up

Main parameters to be incorporated into future modelling of balance of benefit and hazard

- Benefits
 - Absolute proportion achieving mRS 0-1 (without thrombolysis) correlated with severity
 - Relative odds of benefit invariant with severity
- Hazards
 - Absolute risk of haemorrhage (without thrombolysis) correlated with severity
 - Relative odds of haemorrhage invariant with severity
- Implications
 - Careful modelling required under a variety of assumptions (for discussion)

Distribution of mRS (all trials pooled together)

Distribution of mRS at 3-6 months by treatment delay

b) Treatment delay 3-4.5 hours (n=2812)

c) Treatment delay >4.5 hours (n=2812)

Distribution of mRS at 3-6 months by baseline NIHSS

Distribution of mRS at 3-6 months by baseline NIHSS

HYPOTHETICAL representation of benefits vs hazards

EXCLUSION OF NINDS A AND B

Effect on mRS 0-1 by treatment delay

Effect of rt–PA on a good stroke outcome (mRS 0–1), by treatment delay, age and stroke severity

*For each of the three baseline characteristics shown, the odds ratio subgroup estimates shown are derived from a single trial-stratified logistic regression model which allows for separate estimation of the OR in each of the subgroups after adjustment for the other two baseline characteristics (but not possible interactions with those characteristics).

Effect of rt-PA on a good stroke outcome (mRS 0–1) by age, at different treatment delays

*All six estimates are derived from a single stratified logistic regression model which allows the odds ratio to be estimated separately for each group (also adjusted for baseline NIHSS).

Effect on fatal ICH within 7 days

	rt-PA (n=3391)	Control (n=3365)	Odds ratio (95% CI)*
Treatment delay			
≤ 3 hours	17/476 (3.6%)	1/450 (0.2%)	16.46(2.18 - 124.34)
>3, < 4.5 hours	35/1374 (2.5%)	7/1437 (0.5%)	5.63 (2.49 - 12.75)
>4.5 hours	34/1229 (2.8%)	4/1166 (0.3%)	8.18 (2.89 - 23.16)
Age			
≤ 80 years	55/2233 (2.5%)	8/2226 (0.4%)	7.23 (3.43 - 15.23)
>80 years	31/846 (3.7%)	4/827 (0.5%)	7.74 (2.72 - 22.05)
Baseline NIHSS			
0-4	3/324 (0.9%)	0/313 (0.0%)	NE
5-10	20/1194 (1.7%)	5/1163 (0.4%)	3.90 (1.46 - 10.44)
11-15	22/722 (3.0%)	1/734 (0.1%)	→ 23.12 (3.11 - 172.07)
16-21	22/584 (3.8%)	4/595 (0.7%)	5.75 (1.97 - 16.82)
≥22	19/255 (7.5%)	2/248 (0.8%)	9.80 (2.25 - 42.62)
All patients	86/3079 (2.8%)	12/3053 (0.4%)	7.31 (3.99 - 13.41)
		· · · · ·	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
		0.5	1 2 4 8 16 32
		rt-PA bette	er rt-PA worse

NE - Not estimable

Effect of rt-PA on 90-day mortality, overall and by period of follow-up

Test for varying log HR with increasing duration of follow-up (p<0.0001)

Patients can only contribute to a particular risk period if they have already survived any preceding risk periods

* Estimated by Cox proportional hazards regression stratified by trial (and adjusted only for treatment allocation).

** Includes 86 vs. 12 deaths due to ICH (with PH2 evidence; Figure 4) and 180 vs. 166 deaths from other causes. CONFIDENTIAL: NOT FOR PUBLICATION OR CITATION

<u>Average</u> effect of rt-PA on 90-day mortality by treatment delay

Test for linear trend in the log HR with increasing treatment delay (p=0.55)

* Estimated by Cox proportional hazards regression stratified by trial (and adjusted only for treatment allocation).

Update on the Stroke Thrombolysis Treatment (STT) Trialists' Collaboration

Colin Baigent STT Co-chair Professor of Epidemiology and Deputy Director, CTSU, University of Oxford

Baseline characteristics

	Trial		Randomized treatment allocation	
	IST-3 (n=3035)	8 previous trials (n=3721)	rt-PA (n=3391)	Control (n=3365)
Treatment delay (hours)	4.2 (1.2)	3.9 (1.2)	4.0 (1.2)	4.0 (1.2)
≤3	20%	25%	23%	23%
>3, ≤4.5	38%	44%	40%	42%
>4.5	42%	30%	36%	35%
Age (years)	77 (12)	66 (12)	71 (13)	71 (13)
≤80	47%	97%	74%	75%
>80	53%	3%	26%	25%
Stroke severity (NIHSS)	12 (6.9)	12 (6.2)	12 (6.6)	12 (6.5)

Baseline characteristics

		Trial	Randomized treatment allocation	
	IST-3 (n=3035)	8 previous trials (n=3721)	rt-PA (n=3391)	Control (n=3365)
Female	52%	40%	45%	45%
Systolic pressure	155 (24)	153 (21)	154 (22)	154 (22)
Diastolic pressure	82 (15)	84 (13)	83 (14)	83 (14)
History of:				
Hypertension	64%	57%	60%	60%
Stroke	23%	15%	18.3%	18.5%
Diabetes mellitus	13%	19%	16%	16%
Atrial fibrillation	30%	19%	24%	23%

Age vs. treatment delay

Age vs. severity

Severity vs. treatment delay

Joint estimation of the "treatment-modifying effects" of delay, age and stroke severity

- Simple consideration of each characteristic in turn may be misleading (due to the correlation between the three characteristics)
- Multivariable (unconditional) logistic regression models stratified by trial and adjusted for:
 - treatment allocation
 - treatment delay, age and stroke severity
 - 2-way interactions between treatment allocation and each of the potential effect-modifiers
 - 2-sided p-values <0.05 considered nominally significant

Effect of alteplase of a good outcome (mRS 0-1) by treatment delay

Slope not significantly altered by age or stroke severity

Effect of alteplase of a good outcome (mRS 0-1) by treatment delay

Effect on mRS 0-1 by age and stroke severity (at the mean treatment delay of <u>4 hours</u>)

Haemorrhage definitions

Parenchymal haemorrhage type 2 within 7 days

Approximated in IST-3: "significant brain PH local or remote from the infarct, or significant haemorrhagic transformation of an infarct within 7 days"

SITS-MOST at 24-36 hours

PH2 +>4 NIHSS points

Approximated in IST-3: "clinically significant deterioration/death together with evidence of either significant brain PH local or remote from the infarct or significant haemorrhagic transformation of an infarct on brain imaging which, in the judgement of the adjudication panel, was likely to have worsened mass effect or contributed to the burden of brain damage <24 hrs"

Fatal ICH within 7 days

PH2 and death within 7 days

CT of PH2 haemorrhage

Effect of rt-PA on symptomatic and fatal intracranial haemorrhage

* Trial stratified odds ratio adjusted only for treatment allocation

SICH: symptomatic intracranial haemorrhage, PH2: parenchymal haemorrhage type 2

Effect of rt-PA on symptomatic and fatal intracranial haemorrhage

	rt-PA	Control		OR (95% CI)
IST-3 (open control)				
PH-2	134 (8.8%)	25 (1.6%)	_ 	5.80 (3.76 - 8.95)
SITS-MOST	59 (3.9%)	10 (0.7%)	_	6.12 (3.12 - 12.01)
Fatal ICH within 7 days	55 (3.6%)	7 (0.5%)	-	8.14 (3.70 - 17.93)
8 previous trials (plac	ebo controlle	ed)		
PH-2	97 (5.2%)	19 (1.0%)	_	5.24 (3.19 - 8.60)
SITS-MOST	65 (3.5%)	9 (0.5%)	_	7.29 (3.62 - 14.69)
Fatal ICH within 7 days	36 (1.9%)	6 (0.3%)	-	5.98 (2.51 - 14.23)
		0.5	1 2 4 8 16	ר 32
		rt-PA better	rt-PA worse	

Interaction between IST-3 and other trials for PH2: $\chi_1^2 = 0.09$ (p=0.76) Interaction between IST-3 and other trials for SITS-MOST: $\chi_1^2 = 0.13$ (p=0.72) Interaction between IST-3 and other trials for fatal ICH: $\chi_1^2 = 0.27$ (p=0.61)

Effect of rt-PA on SICH at 7 days (PH2) by treatment delay, age and stroke severity

	rt-PA (n=3391)	Control (n=3365)	Odds ratio	o (95% CI)	Average absol	ute risk increase
Treatment de	elay (hours)					
≤ 3	51/787 (6.5%)	7/762 (0.9%)	e	7.43 (3.34 - 16.52)		5.6% (0.8%)
>3, ≤	82/1375 (6.0%)	21/1437 (1.5%)		4.52 (2.77 - 7.36)	-	4.5% (0.4%)
>4.5	98/1229 (8.0%)	16/1166 (1.4%)		6.26 (3.66 - 10.72)	-	6.6% (0.6%)
Age (years)						
≤ 80	153/2512 (6.1%)	27/2515 (1.1%)		6.20 (4.09 - 9.38)	-	5.0% (0.2%)
>80	78/879 (8.9%)	17/850 (2.0%)		4.80 (2.81 - 8.20)		6.9% (0.9%)
Baseline NIH	SS					
0-4	10/345 (2.9%)	1/321 (0.3%)		→ 10.35 (1.32 - 81.41)	_	2.6% (0.8%)
5-10	65/1281 (5.1%)	8/1252 (0.6%)	_	8.24 (3.94 - 17.27)	-	4.4% (0.4%)
11-15	63/794 (7.9%)	7/808 (0.9%)		- 9.96 (4.53 - 21.92)		7.1% (0.9%)
16-21	54/662 (8.2%)	21/671 (3.1%)	e	2.76 (1.64 - 4.63)		5.0% (1.2%)
≥ 22	39/309 (12.6%)	7/313 (2.2%)		6.07 (2.66 - 13.83)		
All patients	231/3391 (6.8%)	44/3365 (1.3%)	\diamond	5.55 (4.01 - 7.70)		
		r				
		0.5 1	2 4 8 16	32	0 2 4 6 8 10	12 14 16
		n-PA better	rt-PA worse		%	

Effect of alteplase on fatal ICH at 7 days by treatment delay, age and stroke severity

	rt-PA (n=3391)	Control (n=3365)	Odds ratio (95% CI)	Average a	bsolute risk increase
Treatment de	lay (hours)				
≤ 3	22/787 (2.8%)	2/762 (0.3%)		õ.41) –	2.5% (0.6%)
>3, ≤	35/1375 (2.5%)	7/1437 (0.5%)	5.63 (2.49 - 12	2.76)	2.1% (0.5%)
>4.5	34/1229 (2.8%)	4/1166 (0.3%)	8.16 (2.88 - 23	9.11)	2.4% (0.5%)
Age (years)					
≤ 80	59/2512 (2.3%)	9/2515 (0.4%)	6.93 (3.42 - 14	l.02) -	2.0% (0.3%)
>80	32/879 (3.6%)	4/850 (0.5%)	····· 7.95 (2.79 - 22	2.60)	3.2% (0.7%)
Baseline NIH	SS				
0-4	3/345 (0.9%)	0/321 (0.0%)	NI	E -	0.9% (0.5%)
5-10	20/1281 (1.6%)	5/1252 (0.4%)	3.90 (1.46 - 10	0.44)	1.2% (0.4%)
11-15	23/794 (2.9%)	1/808 (0.1%)	→ 24.14 (3.25 - 179	9.33)	2.8% (0.6%)
16-21	24/662 (3.6%)	5/671 (0.7%)	5.00 (1.89 - 13	3.20)	2.9% (0.8%)
≥ 22	21/309 (6.8%)	2/313 (0.6%)	> 10.94 (2.54 - 47	7.15)	- 6.2% (1.5%)
All patients	91/3391 (2.7%)	13/3365 (0.4%)	7.14 (3.98 - 12.79))	
NE - Not estin	nable	Г Т			
		0.5 1	2 4 8 16 32	0 2 4 6	8 10 12 14 16
		rt-PA better	rt-PA worse		%

Effect of rt-PA on 90-day mortality, overall and by period of follow-up

* Includes 91 vs 13 deaths from ICH and 191 vs 191 deaths from other causes

P-value for non-proportionality < 0.0001

<u>Average</u> effect of rt-PA on 90-day mortality by treatment delay

Effect of rt-PA on ICH and non-ICH related death during the first 90 days

Effect of rt-PA on ICH and non-ICH related death during the first 90 days

IST3: 18-month follow up for all-cause mortality

Whiteley W et al. Stroke 2014; 45: 3612-7

mRS at 3-6 months, overall and by treatment delay

a) Treatment dela y <=3 hours (n=1549)

b) Treatment dela y 3-4.5 hours (n=2812)

c) Treatment dela y >4.5 hours (n=2812)

All patients (n=6756)

^{*} mRS score ascer tained at 6 months f or IST-3 and 3 months f or other trials.

mRS at 3-6 months, overall and by stroke severity

Expected outcome if NOT given alteplase

0000000000 0000000000

00000000000

Baseline NIHSS ≤4

RESERVE

Classification of 'better than expected' mRS

Probability of	Modified Rankin Score at 3-6 months							
good functional outcome *	0	1	2	3	4	5	6	Total
<6%	21	48	66	119	180	287	628	1349
7 – 22%	59	127	120	201	300	200	330	1337
23 – 45%	150	254	196	245	184	133	197	1359
46 – 67%	272	317	225	209	124	96	96	1339
>67%	415	447	244	132	47	48	39	1372
Total	917	1193	851	906	835	764	1290	6756

* Based on the "original functional recovery model" in Konig *et al.* Stroke 2008; 39: 1821-26

Effect of rt-PA on a better than expected mRS outcome by treatment delay, age and stroke severity

Effect of rt-PA on a better than expected mRS outcome by treatment delay, age and stroke severity (adjusted for all 3 treatment interactions)

Global test of all interactions: χ_4^2 =2.08 (p=0.72)

≤3 hours (mean 2hrs 20 min)

mRS in	mRS in control group								
rt-PA group	0	1	2	3	4	5/6			
0	1449	2243	1578	2349	2702	5573			
1	2006	3554	2475	3929	4075	10650			
2	853	2017	1381	2385	2122	7800			
3	1268	2472	1695	2848	2744	8449			
4	1120	2204	1526	2428	2470	7023			
5-6	2751	6897	4778	8250	7196	27969			

Interpretation:

For each 1000 patients treated with rt-PA rather than control

- 431 would be expected to have a better stroke outcome with rt-PA
- 259 would be expected to have the same outcome
- 310 would be expected to have a worse outcome

Absolute benefit:

122 per 1000 (95% Cl 61 to 171); p<0.001

>3, ≤4.5 hours (mean ~4 hrs)

mRS in	mRS in control group									
rt-PA group	0	1	2	3	4	5/6				
0	13137	15829	12551	9587	11003	21105				
1	13416	16817	14271	10488	11645	27665				
2	7955	10027	8586	6356	7066	17164				
3	8477	11856	11501	8405	8809	30088				
4	5916	7823	6527	5176	5829	13771				
5-6	17899	26348	26877	19235	19456	76046				

Interpretation:

For each 1000 patients treated with rt-PA rather than control

- 399 would be expected to have a better stroke outcome with rt-PA
- 236 would be expected to have the same outcome
- 364 would be expected to have a worse outcome

Absolute benefit:

35 per 1000 (95% Cl -14 to 77); p=0.14

≤4.5 hours (mean 3 hrs 20 min)

mRS in	mRS in control group									
rt-PA group	0	1	2	3	4	5/6				
0	16975	22129	17294	16260	17691	40614				
1	19144	27170	22849	21341	21910	64080				
2	11704	17134	14865	13767	13625	44714				
3	13227	21275	19240	18633	17880	66508				
4	9580	14211	11927	11824	12141	36398				
5-6	30677	53635	50846	48065	44158	188894				

Interpretation:

For each 1000 patients treated with rt-PA rather than control

- 400 would be expected to have a better stroke outcome with rt-PA
- 255 would be expected to have the same outcome
- 345 would be expected to have a worse outcome

Absolute benefit:

55 per 1000 (95% Cl 13 to 91); p=0.004

>4.5 hours (mean 5 hrs 20 min)

mRS in	mRS in control group								
rt-PA group	0	1	2	3	4	5/6			
0	7319	10790	10047	9241	7075	17756			
1	9398	14216	13684	12326	9162	24872			
2	8263	12581	12421	11265	7764	23202			
3	7898	12039	11930	10699	7415	22249			
4	5088	7490	6818	6291	5098	11818			
5-6	15566	24360	24511	21816	14795	47184			

Interpretation:

For each 1000 patients treated with rt-PA rather than control

- 410 would be expected to have a better stroke outcome with rt-PA
- 200 would be expected to have the same outcome
- 390 would be expected to have a worse outcome

Absolute benefit:

20 per 1000 (95% Cl -31 to 75); p=0.45

Relative odds of a good stroke outcome for each alternative definition of 'good outcome'

No. patients with 'good' outcome

* Estimated from a logistic regression model stratified by trial and adjusted only for Rx allocation

** Primary prespecified mRS comparison

Distribution of stroke prognosis* by treatment delay

* Based on each patient's age and stroke severity