Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.
Supplement to: The SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy - a genomewide study. N Engl J Med 2008;359. DOI: 10.1056/NEJMoa0801936.

Supplementary Appendix for: "SLCO1B1 Variants and Statin-Induced Myopathy - A Genomewide Study"

CONTENTS

SEARCH Collaborative Group

Supplementary Tables

Supplementary Table 1: Baseline characteristics of 85 myopathy cases and 90 matched controls in SEARCH

Supplementary Table 2a: Associations with myopathy for SNPs within SLCO1B1 (+/- 10kb) from the genome-wide association study, candidate genotyping and imputation in SEARCH

Supplementary Table 2b: Associations with myopathy for SNPs within CYP3A4 (+/- 10kb) with myopathy in SEARCH

Supplementary Table 3: LDL-cholesterol concentrations and reductions with 40mg simvastatin daily in HPS, subdivided by rs4149056 and rs2306283 SLCO1B1 genotypes

Supplementary Table 4: Previous candidate gene studies of statin-induced myopathy, myalgia or intolerance (also included in Supplementary Table 5); and findings for associations of these genes with myopathy in SEARCH

Supplementary Table 5: Genes previously reported to be associated with statin-induced myopathy, statin intolerance or statin pharmacokinetics; and associations with SNPs in these genes (+/-10kb) with myopathy in SEARCH

Supplementary Table 6: In vivo studies of the association between statin elimination and SLCO1B1 rs4149056 SNP

Supplementary Figure

Supplementary Figure: Trend test chi-squared values for each measured SNP versus expected values given rank (quantile-quantile plot)

Supplementary Methods

Supplementary Methods

Supplementary Methods Table 1a: Oligonucleotides used for resequencing SLCO1B1 gene
Supplementary Methods Table1b: Oligonucleotides used for resequencing CYP3A4 gene

Supplementary Appendix References

SEARCH Collaborative Group

Steering Committee

T Meade and P Sleight (co-chairs); R Collins and J Armitage (study coordinators); S Parish (statistician); J Barton, C Bray and E Wincott (administrative coordinators); L Bowman, R Clarke, I Graham, D Simpson, C Warlow and D Wilcken (other members); J Tobert and T Musliner (observers)

Data Monitoring Committee

L Wilhelmsen (chair), R Doll (ex-chair; deceased), K M Fox, C Hill and P Sandercock (voting members); R Peto (non-voting statistician).

Collaborating hospitals and investigators

Aberdeen Royal: J Webster, J Jamieson, A Nixon, S Lackie, J Thompson; Addenbrooke's: M Brown, S Blackwood, M Morgan; Barnsley District General: W Rhoden (deceased), B Saeed, M Houghton, A Nicholson, C Simpson, B Hoburn; Bedford: I Cooper, A Gallivan, E Pickerell, J Hancock, J Watkinson; Birmingham City: B Ryder, S Jones, W Burbridge, M Kitchen, H O'Leary, C Verow, L Meynell, L Rollinson; Birmingham Heartlands: S Bain, A Jones, C Jewkes, C Russon; Bishop Auckland General: M Bateson, P Gill, J Nicol; Bristol Royal: D Stansbie, G Bayly, G Andrews, M Halestrap, J Meredith; Burnley General: R Best, D Appleyard, R Briggs, H Wareing, K Holmes, J Holt, M Kenyon; Castleford \& Normanton: C White, M Khalifa, D Newton, A Wass, R Watkinson; City General, Stoke-on-Trent: J Creamer, S Anderson, A Bethell, C Butler, M Washington, E Weston, J Machin, K Cleaver; Conquest, Hastings: R Wray, J Sinclair, A Van Aalst; Coventry and Warwickshire: M Been, R Mattu, D Bates, A Burke, L Gill, E Walton; Cumberland: M Cowley, H Robson, A Graham, G Rose, M Kerr, J Mallinson, B Peascod; Derbyshire Royal: J Kalk, A Scott, R Donnelly, T Gibson, J Hannah, L Henshaw, M Margetts, N Pearson, S Frost, S Murray; Derriford: A Marshall, J Went, A Inman, J Simmonds, A Teasdale; Dewsbury: T Kemp, G Roberts; Ealing: J Kooner, S Cahill, M Lloyd, O Molloy, J Wrigley, M Galvin, C Wilder; Edinburgh Royal: C Swainson, R Lindley, S Shaw, L Hillis, J Johnston, D Miller, M Kennedy; Fairfield, Bury: S Mushahwar, M Savage, D Appleyard, G Ayer, J Schofield, S Greenhalgh, J Parks, S Speak; Frenchay, Bristol: C Coulson, M Papouchado, R Carpenter, J Wisby; Glasgow Royal: S Cobbe, C Campbell, J Hunter, H Young, M Gallacher; Gloucestershire Royal: D Lindsay, A Halliday, S Godfrey, L O'Donahoo; Guy's \& St Thomas': J Chambers, A Wierzbicki, A Jones, D Parkin, K Nwafor; Hairmyres, Glasgow: B Vallance, K Oldroyd, N Cunningham, G Moreland, C Oldroyd, H Young, M Crawford; Hillingdon: R Hillson, K Knott, N Mahabir, A Crouch, Y MacDonald; HM Stanley, St Asaph: J Green, L Brown, J Heron, N Jones, M Roberts, D Hainsworth, J Williams; Hope Hospital, Salford: P Barnes, C Longworth, J Davidson; Ipswich: N Irvine, R Oliver, C Pond, M Nuttall; King's Mill, Sutton-in-Ashfield: R LloydMostyn, M Brown, S Blackburn, W Furnell, S Webster, L Wheatley; Leicester General: I Hudson, J Pohl, S Nicholson; Leighton, Crewe: S Mallya, M Nash, J Spruce, A Searle, A Bonner, J Leather; Macclesfield: E Davies, R Egdell, B Price, A Robinson, S Horton; Manor, Walsall: A Cunnington, P Giles, J Sidaway, L Tomlinson, E Walton, L Hawkins, J Long; Memorial, Darlington: J Murphy, G Brennan, M Boon, S Cassidy; Monklands, Airdrie: C Rodger, J Hunter, A McNeilly, G Moreland, A Radcliffe; Monkwearmouth, Sunderland: M Farrer, J Bluett, L Cowell, A Farrell, S Gilroy, S Warren; Musgrove Park, Taunton: T MacConnell, S Burtchaell, L Williams; New Cross, Wolverhampton: P Rylance, A Hodgson, K Kertland-Hill, L Robinson, A Smallwood, S Lomas; Newton Hospital, St Helens: J Ball, K Hardy, S Benbow, M Gerrard, C Langley, C Fagan; Ninewells, Dundee: B Green, T Pringle, H Hanna, A Mackintosh, E Watson; North Manchester General: J Swan, D Appleyard, D McSorland, G Thompson, C O'Neill; North

Tyneside General: R Curless, C Doig, P McKenna, J Martin, J Murdy, A Scott, S Martin; Northampton General: J Birkhead, J O'Donnell, S Dixon, A Hassall, E Tanqueray, D Vass, I Cosford, M Elderkin, P McKenzie; Northern General: T Gray, D Appleyard, N Holmshaw, A McKinnon, I Ali; Northwick Park: N Stephens, A Banfield, L Chester, J Wiseman, N Harrisingh, R Patel, P Thaker; Oxford Radcliffe Hospitals: H Watkins, J Armitage, S Beebe, J Fitzgerald, J Godden, A Lawson, H Lochhead, A Taylor, S Turner; Peterborough: D Rowlands, A Cooper, J Graham, S Hennessy, T Rashid, C Smith; Pilgrim Hospital, Boston: C Nyman, J Adams, A Hardwick, P Buck, C Pattinson, J Trigg; Poole General: A McLeod, S Gardner, L Haimes, S Orr, S Johns; Princess Royal, Telford: N Capps, A Cook, D Donaldson, C Keighley, C Stiles, S Asbridge; Queen Elizabeth, Birmingham: N Buller, J Hooks, C Jewkes, H Jones, R Watson, P Salt; Queen Margaret, Dunfermline: M Francis, D MacLeod, P Allcoat, R Stuart; Queen's Hospital, Burton-upon-Trent: T Reynolds, J Maiden, J Reynolds, D Murray; Raigmore, Inverness: R MacFadyen, L Potts, A Smith, L King; Rotherham General: R Muthusamy, M Jones, M Lawan, C Weston, J Nixon, L Wasnidge; Royal Bolton: A Hutchesson, J Evans, K Morris, M Oultram; Royal Bournemouth: M Armitage, R Skule, C Cope, M Page; Royal Cornwall: S Fleming, K Andain, M Parrett, R Soper; Royal Devon and Exeter: K MacLeod, K Gordon, E Green, S Havill, V Stewart, S Allen, S Henson, C Rimmer; Royal Gwent: J Davies, M Javed, A Norris, M Williams; Royal Preston: S Khan, G Dobie, J Fitton, S Gilbert, C Davenport, M Williamson; Royal Sussex County: R Vincent, E Joyce; Royal United, Bath: J Reckless, A Bishop, L Brice, R Carpenter, P Field, C Shute, D Stacey; Russell Institute, Paisley: I Findlay, C Campbell, J Hunter, M Gallacher; Russells Hall: M Labib, A Hodgson, J Sidaway, L Beddoe, J Reed; St Helier: J Barron, O Odemuyiwa, B Bradford, M McDonnell, L West, P Beck; St James University, Leeds: S Gilbey, A Clarkson, K Drury, S Hall, D Quartey, B Whittam, D Lund, L Stott; St Luke's, Huddersfield: H Griffiths, D Appleyard, J Fitzgerald, A Kudarenko; St Mary's, Portsmouth: J Watkins, S Golledge, J Pottle, S Little, B Paine, C Shears; St Peter's, Chertsey: M Baxter, P Wilkinson, R Chambers, C Hamper, E Hollister, H Ramsay, J Barber; T Hopkins, Sandwell General: L Hughes, J Elson-Whittaker, C Verow, R Lambley, C Lloyd; Scunthorpe General: J Dhawan, J John, D Bramley, A Catchpole, A Colecchia, M LeQuelenec, D Remington, J Wiseman, C Gray, P Anderson, R Woolass; Singleton, Swansea: P Thomas, C Weston, F Guy, J Lynch, R Thomas, S Coates, M Gait; Southampton University Hospitals: D Waller, K Elkins, M Franklin, L Moore; Southlands: M Signy, R Chilton, E Joyce, C Wrapson, C Wiltshire; Stepping Hill, Stockport: P Lewis, J Curtis, J O'Toole, S Scanlon; Torbay: C Carey, L Dobson, M Gould, H Mansfield, G Ranson, M Rodaway, J Germon; Univ Hospital of Wales: I McDowell, J Cockcroft, R Field, J Whiting; Victoria Hospital, Blackpool: D Roberts, M Cooper, C Davies, J Fitton, L Radford, L Ward, M Williamson; Victoria Infirmary, Glasgow: H McAlpine, H Dougall, L Robertson, L Scott, H Young; Walton Centre: P Humphrey, S Saminaden, D Watling, J Davies, L Owen; Watford General: M Clements, E Walker, E Atkins; Western General, Edinburgh: R Lindley, T Shaw, C Swainson, H MacCallum, D Markie, V Melville, LAdamson, A Johnston, E Poulkard, M Rudden; Whipps Cross: J Hogan, F Lie, V Badger, S Duffy, C Mitchell, E MacQueen; Wishaw General: R Baxter, S Campbell, L McDonald, H Wood; Worcester Royal: A Munro, C Pycock, J Cadwell, A Doughty, M Harvey; Wycombe General: S Price, M Aldersley, S Lock, P Pendrey.

Genotyping and sequencing (Centre National de Génotypage, Paris, France)

Anne Boland, Marc Delepine, Ivo Gut, Simon Heath, Marc Lathrop, Doris Lechner, Fumihiko Matsuda, Diana Zelenika.

Coordinating Centre (Clinical Trial Service Unit, University of Oxford, UK)

Administrative coordinators: J Barton, C Bray, R Dayanandan, E Wincott; Administration: C Anderson, J Benham, H Bojowsky, V Booker, A Brewer, G Brindley, L Cobb, M Corbett, J Crowther, S Danesh-Pour, K Edmunds, A Fortun, T Grimsey, C Harwood, D Haywood, C Hope, R Jones, S Jones, K Kidney, M King, S Knight, H Lang, Z Madgwick, C Marsden, P Marshall, C Matthews, M Matthewson, J Miller, B Moss, Y Mostefai, K Murphy, A Naughten, S Pickworth, A Radley, S Southren, S Sutherland, R Tong, M Umbrath; Clinical support and outcome adjudication: J Armitage, C Baigent, L Bowman, R Bulbulia, R Clarke, R Collins, T Dasgupta, R Haynes, M Landray, M Mafham, W Majoni, T Porter, K Rahimi, C Reith, K Walter; Computing coordinators: P Harding, M Lay, K Wallendszus; Statistics and computing: C Berry, D Bennett, H Bettesworth, J Booth, M Bowes, Y Bu, A Charles, P Cleverley, A Cody, J Cox, M Craig, J Emberson, N Goodwin, J Hopewell, C Hurt, E Link, P McCabe, A Munday, A Murawska, A Offer, A Palmer (deceased), S Parish, R Peto, N Prajapati, S Tochlin, A Young, A Young; Laboratory coordinators: S Clark, K Kourellias, M Radley; Laboratory: V Ambrose, M Bradley, E Bush, T Chavagnon, B Chukwurah, S Crowley, J Dunseath, K Emmens, L Fletcher, J Gordon, A Gordon, C Hickman, J Hill, M Ji, A Lee, N Luker, S Norris, H Priestley, J Sullivan, J Taylor, J Wintour, M Yeung, L Youngman; Nurse monitors \& trainers: S Beebe, J Fitzgerald, J Godden, L Haimes, A Lawson, H Lochhead, M McDonnell, M Nash, A Robinson, A Taylor, E Walton.

Supplementary Tables

Baseline characteristics	Number (\%) or mean (SD)	
	$\begin{gathered} \text { Cases } \\ (85) \\ \hline \end{gathered}$	$\begin{gathered} \text { Controls } \\ (90) \\ \hline \end{gathered}$
Matched characteristics		
Male	61 (72\%)	67 (74\%)
Amiodarone use	10 (12\%)	12 (13\%)
Age (years)	67 (9)	67 (10)
eGFR ($\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$)	69.4 (17.3)	70.1 (17.5)
Other characteristics		
Current smoker	2 (2\%)	11 (12\%)
Body-mass Index (kg/m²)	27.7 (3.8)	27.4 (3.5)
Diabetes mellitus	13 (15\%)	8 (9\%)
Treated hypertension	39 (46\%)	34 (38\%)
Cerebrovascular disease	7 (8\%)	10 (11\%)
Other arterial disease*	2 (2\%)	3 (3\%)
Total cholesterol (mmol/l)	4.03 (0.68)	4.28 (0.76)
LDL-cholesterol (mmol/l)	2.34 (0.54)	2.51 (0.68)
HDL-cholesterol (mmol/l)	1.06 (0.32)	1.11 (0.37)
Triglycerides ($\mathrm{mmol} / \mathrm{l}$)	1.71 (1.03)	1.86 (1.42)
Apolipoprotein- A_{1} (g/l)	1.36 (0.20)	1.37 (0.22)
Apolipoprotein B (g/l)	0.87 (0.16)	0.90 (0.17)
Creatine kinase (IU/L)	135 (75)	139 (87)
Alanine transaminase (IU/L)	23.6 (8.5)	24.8 (9.7)

Supplementary Table 1: Baseline characteristics of 85 myopathy cases and 90 matched controls in SEARCH

All of these cases and controls had been allocated 80 mg simvastatin daily and classified themselves as with European ancestry, with matching of controls for sex, age (3 groups), estimated glomerular filtration rate (eGFR; 3 groups) and amiodarone use at baseline. Blood factors were measured after participants had received 20 mg simvastatin daily for 2 months prior to randomisation. *Other arterial disease $=$ history of non-coronary arterial bypass surgery or angioplasty.

Supplementary Table 2a

Variant name	Position	Alleles		Minor allele frequency		Trend p-value	OR (95\% CI) per minor allele	Genotyped (G)/imputed (I)*
		Minor	Major	Case	Control			
5' Upstream sequence								
rs17387842	21165584	C	T	0.13	0.22	2×10^{-2}	0.5 (0.3-0.9)	I
rs327544	21165757	T	C	0.04	0.02	3×10^{-1}	2.2 (0.5-9.1)	I
rs12368786	21165942	A	T	0.13	0.22	2×10^{-2}	0.5 (0.3-0.9)	I
rs327543	21166718	A	C	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	,
rs11045775	21167081	A	G	0.15	0.25	2×10^{-2}	0.5 (0.3-0.9)	I
rs10841751	21167328	C	T	0.15	0.25	2×10^{-2}	0.5 (0.3-0.9)	I
rs11045776	21169459	G	A	0.15	0.25	2×10^{-2}	0.5 (0.3-0.9)	I
rs16923481	21169585	G	A	0.02	0.03	8×10^{-1}	0.8 (0.2-3.2)	,
rs11045777	21170848	A	G	0.13	0.22	2×10^{-2}	0.5 (0.3-0.9)	,
rs704166	21171109	A	G	0.14	0.07	6×10^{-2}	1.9 (1.0-3.9)	1
rs4149012	21172826	G	A	0.02	0.07	3×10^{-2}	0.3 (0.1-0.9)	1
rs852550	21173034	C	T	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	G*
rs852549	21173156	T	G	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	G*
rs4149013	21173677	G	A	0.02	0.07	3×10^{-2}	0.3 (0.1-0.9)	
rs17328763	21173837	C	T	0.13	0.22	2×10^{-2}	0.5 (0.3-0.9)	1
CNG40001729	21175214	G	C	0.00	0.01	3×10^{-1}	(0.3-0.9)	G
CNG40001730	21175277	C	A	0.14	0.03	5×10^{-4}	5.1 (1.9-14.0)	G
CNG40001731	21175387	T	A	0.01	0.00	3×10^{-1}	-	G
Intron 1								
CNG40001732	21175502	C	G	0.00	0.01	3×10^{-1}	-	G
rs4149089	21175894	A	-	0.15	0.30	1×10^{-3}	0.4 (0.2-0.7)	G
rs12816706	21183278	G	A	0.04	0.02	5×10^{-1}	1.6 (0.4-6.0)	1
rs3829310	21183323	G	A	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	1
rs3829307	21183473	T	A	0.15	0.29	1×10^{-3}	0.4 (0.2-0.7)	
rs3829306	21183547	T	C	0.02	0.07	3×10^{-2}	0.3 (0.1-0.9)	G*
rs2010668	21185560	T	G	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	I
Intron 2 (0)								
rs4149021	21186052	A	G	0.02	0.01	3×10^{-1}	3.3 (0.3-31.9)	1
rs12812795	21186062	T	A	0.04	0.02	5×10^{-1}	1.6 (0.4-6.0)	1
rs4149022	21186879	A	G	0.15	0.29	1×10^{-3}	0.4 (0.2-0.7)	1
rs11045785	21187494	A	T	0.13	0.22	2×10^{-2}	0.5 (0.3-0.9)	1
rs11045786	21187538	T	C	0.12	0.21	2×10^{-2}	0.5 (0.3-0.9)	1
rs2417954	21187611	A	G	0.32	0.38	2×10^{-1}	0.8 (0.5-1.2)	1
rs2417955	21187742	T	A	0.32	0.38	2×10^{-1}	0.8 (0.5-1.2)	1
rs10743408	21187974	C	G	0.14	0.07	4×10^{-2}	2.1 (1.0-4.3)	1
rs2061903	21189969	A	G	0.12	0.21	4×10^{-2}	0.5 (0.3-0.9)	1
rs7977197	21190855	C	A	0.12	0.21	2×10^{-2}	0.5 (0.3-0.9)	1
rs11045787	21191269	G	T	0.12	0.21	2×10^{-2}	0.5 (0.3-0.9)	1
rs11513411	21194706	A	G	0.02	0.07	2×10^{-2}	0.3 (0.1-0.9)	1
rs11045790	21195636	G	A	0.04	0.04	3×10^{-2}	0.8 (0.3-2.3)	1
rs7489119	21196565	A	C	0.12	0.22	7×10^{-1}	0.5 (0.3-0.9)	I
rs12372124	21199483	C	A	0.12	0.22	2×10^{-2}	0.5 (0.3-0.9)	1
rs11045796	21199890	G	A	0.02	0.07	2×10^{-2}	0.3 (0.1-0.9)	1
rs4149023	21200724	T	G	0.02	0.07	3×10^{-2}	0.3 (0.1-0.9)	1
rs4149024	21200790	T	A	0.02	0.01	3×10^{-2}	3.3 (0.3-31.9)	1

Supplementary Table 2a (continued)								
rs11045797	21200981	C	T	0.12	0.22	2×10^{-2}	0.5 (0.3-0.9)	I
rs11045799	21202292	C	T	0.12	0.22	2×10^{-2}	0.3 (0.1-0.8)	I
rs11045800	21202515	C	T	0.04	0.11	1×10^{-2}	1.2 (0.7-2.0)	I
rs16923519	21202985	G	A	0.21	0.18	6×10^{-1}	0.3 (0.1-0.8)	I
rs11045802	21203587	G	T	0.04	0.11	1×10^{-2}	0.7 (0.5-1.1)	I
rs981262	21203777	A	G	0.32	0.40	1×10^{-1}	2.7 (1.3-5.4)	1
rs7138177	21204191	G	A	0.18	0.08	5×10^{-3}	0.7 (0.5-1.1)	I
rs7962588	21204643	G	C	0.33	0.40	2×10^{-1}	0.5 (0.3-0.9)	I
rs11045805	21205463	G	A	0.12	0.22	2×10^{-2}	0.5 (0.3-0.9)	I
rs4149026	21206682	C	A	0.22	0.35	1×10^{-2}	0.2 (0.0-0.6)	G*
rs976754	21206789	G	A	0.02	0.10	1×10^{-3}	0.2 (0.1-1.2)	1
rs4149028	21207219	C	T	0.01	0.04	6×10^{-2}	0.9 (0.6-1.3)	1
rs4149030	21207480	A	G	0.45	0.49	5×10^{-1}	0.4 (0.2-0.8)	G*
rs10444413	21208935	C	T	0.08	0.18	7×10^{-3}	0.3 (0.2-0.6)	1
rs4149032	21209058	T	C	0.14	0.34	3×10^{-5}	2.3 (1.4-3.7)	I
rs4149033	21209077	A	G	0.36	0.19	8×10^{-4}	0.3 (0.2-0.6)	1
rs4149034	21209189	A	G	0.14	0.34	3×10^{-5}	1.3 (0.8-1.9)	1
rs4149035	21209532	T	C	0.44	0.37	2×10^{-1}	0.7 (0.2-2.0)	1
rs11045808	21209956	C	G	0.03	0.04	5×10^{-1}	0.7 (0.2-2.0)	1
rs2219828	21210580	A	G	0.03	0.04	5×10^{-1}	0.8 (0.3-2.3)	I
rs7296796	21211953	G	A	0.04	0.04	7×10^{-1}	1.1 (0.7-1.6)	I
rs7973095	21212537	T	C	0.45	0.43	8×10^{-1}	0.4 (0.2-0.7)	I
rs10841753	21212637	C	T	0.08	0.21	1×10^{-3}	1.0 (0.5-2.2)	I
rs7139376	21212696	T	C	0.09	0.09	1×10^{-0}	0.9 (0.6-1.4)	I
rs11045812	21212749	T	C	0.44	0.47	6×10^{-1}	0.2 (0.0-1.8)	I
rs12311454	21212774	T	G	0.01	0.03	1×10^{-1}	0.4 (0.2-0.8)	I
rs11045813	21213323	A	G	0.09	0.19	9×10^{-3}	0.3 (0.1-1.4)	I
rs11045814	21213479	A	T	0.01	0.04	9×10^{-2}	1.1 (0.7-1.6)	I
rs10841754	21213502	T	A	0.48	0.46	6×10^{-1}	0.3 (0.1-1.4)	I
rs12313639	21214239	C	G	0.01	0.04	9×10^{-2}	0.4 (0.2-0.8)	I
rs11045816	21214539	G	A	0.09	0.19	9×10^{-3}	0.9 (0.6-1.4)	I
rs17388851	21214823	T	C	0.44	0.47	6×10^{-1}	0.3 (0.1-1.4)	I
rs2417957	21214878	T	C	0.01	0.04	9×10^{-2}	1.2 (0.8-1.9)	1
rs7136445	21216015	G	A	0.46	0.40	3×10^{-1}	0.5 (0.3-0.9)	1
rs7295464	21216614	G	A	0.07	0.09	5×10^{-1}	0.8 (0.3-1.7)	G
CNG40001743	21216745	C	T	0.04	0.01	4×10^{-2}	6.9 (0.8-58.3)	G
Intron 3								
CNG40001744	21217040	A	-	0.00	0.01	3×10^{-1}	-	G
rs2291073	21217081	G	T	0.02	0.11	5×10^{-4}	0.1 (0.0-0.5)	G*
rs2291074	21217216	G	A	0.01	0.04	9×10^{-2}	0.3 (0.1-1.4)	1
Exon 4								
(Ser85Ser)	21218806	C	T	0.01	0.00	3×10^{-1}	-	G
Intron 4								
rs4149036	21219007	A	C	0.38	0.22	2×10^{-3}	2.1 (1.3-3.3)	1
rs4149037	21219478	G	A	0.01	0.04	9×10^{-2}	0.3 (0.1-1.4)	1
rs4149038	21219509	G	A	0.38	0.22	2×10^{-3}	2.1 (1.3-3.3)	G*
rs4149040	21219691	C	G	0.47	0.44	6×10^{-1}	1.1 (0.7-1.6)	1
rs17329885	21219832	C	T	0.08	0.18	7×10^{-3}	0.4 (0.2-0.8)	G*
rs4149041	21220106	T	G	0.01	0.04	9×10^{-2}	0.3 (0.1-1.4)	I
rs964614	21220657	C	T	0.09	0.09	1×10^{-0}	1.0 (0.5-2.2)	1
rs964615	21220691	T	C	0.09	0.09	1×10^{-0}	1.0 (0.5-2.2)	G*

Supplementary Table 2a (continued)

Exon 5

rs2306283 (Asn130Asp)	21221005	G	A	0.48	0.44	5×10^{-1}	1.2 (0.8-1.7)	G*
rs11045818								
(Ser137Ser)	21221028	A	G	0.08	0.18	7×10^{-3}	0.4 (0.2-0.8)	G
rs11045819								
(Pro155Thr)	21221080	A	C	0.08	0.18	7×10^{-3}	0.4 (0.2-0.8)	G
Intron 5								
rs11045820	21221258	T	C	0.08	0.18	7×10^{-3}	0.4 (0.2-0.8)	G
rs4149044	21221263	T	A	0.39	0.23	2×10^{-3}	2.1 (1.3-3.3)	G
rs4149045	21221287	A	G	0.39	0.23	2×10^{-3}	2.1 (1.3-3.4)	G
rs4149046	21221289	A	G	0.43	0.47	6×10^{-1}	0.9 (0.6-1.3)	G
rs4149048	21221618	G	A	0.38	0.22	2×10^{-3}	2.1 (1.3-3.3)	I
rs4149050	21222255	C	T	0.47	0.24	3×10^{-5}	2.6 (1.6-4.0)	I
rs4149054	21222446	A	G	0.47	0.24	3×10^{-5}	2.6 (1.6-4.0)	I
$\begin{aligned} & \text { Exon } 6 \\ & \text { rs4149056 } \end{aligned}$								
(Val174Ala)	21222816	C	T	0.46	0.13	3×10^{-9}	4.4 (2.6-7.6)	G
rs4149056								
(Val174Ala)	21222816	C	T	0.45	0.13	2×10^{-9}	4.5 (2.6-7.7)	G + I
rs2291075								
(Phe199Phe)	21222892	T	C	0.55	0.42	3×10^{-4}	2.2 (1.4-3.5)	I
rs2291075								
(Phe199Phe)	21222892	T	C	0.55	0.42	2×10^{-2}	1.6 (1.1-2.5)	I
Intron 7								
rs2291076	21223254	T	C	0.34	0.46	3×10^{-2}	0.6 (0.4-1.0)	G
rs2291077	21223488	T	A	0.42	0.55	3×10^{-2}	0.6 (0.4-1.0)	G
rs11045821	21223690	A	G	0.08	0.18	8×10^{-3}	0.4 (0.2-0.8)	1
rs4762698	21224110	A	G	0.09	0.09	1×10^{-0}	1.0 (0.5-2.2)	I
rs12812279	21224307	G	A	0.08	0.18	8×10^{-3}	0.4 (0.2-0.8)	I
rs4149058	21224481	G	A	0.47	0.23	2×10^{-5}	2.6 (1.7-4.1)	I
rs6487213	21224533	C	T	0.44	0.54	7×10^{-2}	0.7 (0.5-1.0)	I
rs1000691	21224693	A	G	0.01	0.04	6×10^{-2}	0.2 (0.0-1.5)	I
rs999278	21224918	A	C	0.35	0.46	5×10^{-2}	0.7 (0.4-1.0)	I
rs11045823	21225012	A	G	0.08	0.19	5×10^{-3}	0.4 (0.2-0.8)	1
rs11045824	21225179	T	G	0.08	0.19	5×10^{-3}	0.4 (0.2-0.8)	I
rs11045825	21225277	C	T	0.08	0.19	5×10^{-3}	0.4 (0.2-0.8)	1
rs991262	21225481	A	G	0.06	0.08	5×10^{-1}	0.7 (0.3-1.7)	I
rs1564370	21226457	G	C	0.38	0.49	4×10^{-2}	0.6 (0.4-1.0)	I
rs1463565	21226648	C	G	0.47	0.46	5×10^{-2}	2.7 (1.7-4.3)	I
rs2900476	21227330	C	T	0.38	0.23	9×10^{-6}	0.6 (0.4-1.0)	1
rs2100996	21229464	G	A	0.01	0.49	4×10^{-2}	0.2 (0.0-1.5)	G*
rs1120964	21230957	T	C	0.15	0.04	6×10^{-2}	0.4 (0.3-0.8)	1
rs11045834	21232363	T	C	0.34	0.28	3×10^{-3}	0.4 (0.2-0.8)	G*
Intron 8								
rs7957274	21241663	C	T	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	G
rs4149061	21241935	T	C	0.40	0.51	5×10^{-2}	0.7 (0.4-1.0)	1
rs4149063	21242057	T	G	0.05	0.07	4×10^{-1}	0.7 (0.3-1.6)	1
rs4149064	21242128	G	A	0.05	0.07	5×10^{-1}	0.7 (0.3-1.7)	G*
rs12302293	21243214	A	G	0.02	0.01	2×10^{-1}	4.4 (0.5-40.1)	1
rs12424765	21243244	C	T	0.01	0.03	1×10^{-1}	0.2 (0.0-1.8)	I
rs1871395	21243582	G	A	0.45	0.13	4×10^{-9}	4.3 (2.5-7.4)	I
rs12317268	21243808	G	A	0.45	0.13	4×10^{-9}	4.3 (2.5-7.4)	I
rs12310977	21243822	C	T	0.02	0.04	3×10^{-1}	0.5 (0.1-1.8)	1
rs11045858	21243938	G	A	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	1

Supplementary Table 2a (continued)

Intron 9

rs1564365	21245737	G	A	0.06	0.05	7×10^{-1}	$1.2(0.5-3.1)$	I
Intron 10								
rs12427008	21249215	C	T	0.05	0.08	4×10^{-1}	$0.7(0.3-1.6)$	I
CNG40001759	21249941	-	A	0.01	0.07	3×10^{-3}	$0.1(0.0-0.6)$	G
rs4149099	21249964	-	CTT	0.44	0.54	8×10^{-2}	$0.7(0.5-1.0)$	G
CNG40001761	21249994	T	C	0.00	0.02	9×10^{-2}	-	G
CNG40001762	21250055	C	T	0.02	0.00	2×10^{-1}		G
Intron 11								
rs2417967	21252002	A	G	0.01	0.04	9×10^{-2}	$0.3(0.1-1.4)$	I
rs11045863	21253135	T	C	0.09	0.20	5×10^{-3}	$0.4(0.2-0.8)$	I
rs4363657	21259989	C	T	$\mathbf{0 . 4 6}$	0.13	4×10^{-9}	$4.3(2.5-7.2)$	G*
rs2900478	21260064	A	T	$\mathbf{0 . 4 6}$	0.13	3×10^{-9}	$4.3(2.5-7.3)$	I
rs4149068	21260458	C	T	0.01	0.03	1×10^{-1}	$0.2(0.0-1.8)$	I
rs4149069	21260593	G	C	0.42	0.53	5×10^{-2}	$0.7(0.5-1.0)$	I
rs4149070	21261150	G	C	0.03	0.13	1×10^{-3}	$0.2(0.1-0.6)$	G
rs4149071	21261231	C	T	0.03	0.13	2×10^{-3}	$0.2(0.1-0.6)$	G
rs4149100	21261245	-	A	0.47	0.14	4×10^{-9}	$4.3(2.5-7.4)$	G
rs4149072	21261252	A	G	0.02	0.05	2×10^{-1}	$0.5(0.2-1.6)$	G

Exon 12
CNG40001756
(Pro525Ser)
CNG40001757
(Gln541Leu)

Intron 12

rs4149076	21262411	C	T	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	1
rs2417968	21263396	C	G	0.42	0.53	5×10^{-2}	0.7 (0.5-1.0)	I
rs11045872	21263611	G	A	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	1
rs987839	21266105	A	G	0.42	0.53	5×10^{-2}	0.7 (0.5-1.0)	G*
Intron 14								
rs4149081	21269288	A	G	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	1
rs7966613	21270899	G	A	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	G*
rs11045878	21273489	G	A	0.55	0.36	1×10^{-3}	2.0 (1.3-3.1)	1
rs10841763	21273609	C	T	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	G*
rs11045879	21273886	C	T	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	I
rs717958	21273997	G	T	0.02	0.05	1×10^{-1}	0.4 (0.1-1.4)	
rs7137060	21274097	T	C	0.12	0.22	2×10^{-2}	0.5 (0.3-0.9)	
rs11045880	21274167	C	T	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	
rs11045884	21275649	C	G	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	
rs7969341	21276871	G	A	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	
rs11045885	21277285	G	A	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	1
rs10841767	21277328	G	A	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	G*
rs12371792	21278110	C	T	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	1
rs11045887	21278745	G	C	0.09	0.19	7×10^{-3}	0.4 (0.2-0.8)	
rs12829704	21279888	A	G	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	
rs12830367	21280172	T	G	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	
rs11045889	21280304	T	A	0.55	0.33	2×10^{-4}	2.2 (1.4-3.4)	I
rs2199763	21280975	G	A	0.58	0.41	3×10^{-3}	1.9 (1.2-2.8)	I
rs12578392	21281237	C	T	0.58	0.41	3×10^{-3}	1.9 (1.2-2.8)	I
rs12371604	21282603	C	T	0.49	0.21	7×10^{-7}	3.0 (1.9-4.7)	I
rs12369881	21282619	A	G	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	I
rs12366582	21282875	G	A	0.46	0.13	3×10^{-9}	4.3 (2.5-7.3)	I

Supplementary Table 2a (continued)								
Exon 15								
rs34671512								
(Leu643Phe)	21283243	C	A	0.01	0.08	1×10^{-3}	0.1 (0.0-0.6)	G
Exon 15: 3' untranslated region								
CNG40001747	21283436	G	T	0.03	0.01	3×10^{-1}	2.3 (0.4-12.8)	G
rs4149085	21283557	C	T	0.00	0.01	3×10^{-1}	-	G
rs4149087	21283829	T	G	0.40	0.59	1×10^{-3}	0.5 (0.3-0.8)	G
rs11045891	21283839	C	A	0.09	0.20	1×10^{-2}	0.5 (0.2-0.9)	G
rs4149088	21283853	A	G	0.40	0.59	1×10^{-3}	0.5 (0.3-0.8)	G
CNG40001749	21283871	C	T	0.01	0.00	3×10^{-1}	-	G
CNG40001750	21283965	A	G	0.01	0.01	6×10^{-1}	0.5 (0.0-6.0)	G
3 ' downstream sequence								
rs11045892	21284061	G	A	0.09	0.19	1×10^{-2}	0.4 (0.2-0.9)	G
rs11045893	21284086	C	T	0.09	0.20	5×10^{-3}	0.4 (0.2-0.8)	I
rs12372157	21284285	G	T	0.58	0.40	2×10^{-3}	1.9 (1.2-2.8)	1
rs12370842	21284853	A	G	0.09	0.19	1×10^{-2}	0.4 (0.2-0.8)	1
rs10841769	21286286	G	A	0.41	0.52	7×10^{-2}	0.7 (0.5-1.0)	I
rs7960688	21287136	C	G	0.09	0.19	7×10^{-3}	0.4 (0.2-0.8)	1
rs7960384	21287175	G	A	0.09	0.19	7×10^{-3}	0.4 (0.2-0.8)	1
rs11045900	21290186	G	A	0.58	0.40	2×10^{-3}	1.9 (1.2-2.8)	1
rs11045901	21290488	C	T	0.58	0.40	2×10^{-3}	1.9 (1.2-2.8)	1
rs12372067	21292800	A	C	0.58	0.40	2×10^{-3}	1.9 (1.2-2.8)	1
rs12372111	21292943	T	G	0.58	0.40	2×10^{-3}	1.9 (1.2-2.8)	1
rs12372162	21293291	G	A	0.41	0.52	7×10^{-2}	0.7 (0.5-1.0)	1

Supplementary Table 2a: Associations with myopathy for SNPs within SLCO1B1 (+/- 10kb) from the genome-wide association study, candidate genotyping and imputation in SEARCH

Based on the 85 cases and 90 controls in Supplementary Table 1. SNPs in Supplementary Tables 2a and $\mathrm{2b}$ are ordered by position and labelled by their region status (according to Ensembl!; November 2007: http://www.ensembl.org/Homo_sapiens/exonview?db=core;transcript=ENST00000256958). Single SNP p-values smaller than 5×10^{-7} are highlighted in bold. For exonic variants, the protein change is listed with the name of the variant. Allele codings are in the forward orientation (positive strand). *Asterisks indicate genotyped variants in the Illumina panel.

Variant name	Position	Alleles		Minor allele frequency		Trend p-value	$\begin{aligned} & \text { OR }(95 \% \mathrm{CI}) \\ & \text { per minor } \\ & \text { allele } \end{aligned}$	Genotyped (G)/imputed (I)*
		Minor	Major	Case	Control			
3' Untranslated region								
rs2005548	99184309	A	G	0.00	0.01	3×10^{-1}	-	1
rs6945984	99186264	G	A	0.06	0.08	5×10^{-1}	0.8 (0.4-1.7)	I
rs2404955	99191215	T	C	0.06	0.08	7×10^{-1}	0.9 (0.4-1.8)	I
rs12333983	99192050	T	A	0.06	0.08	7×10^{-1}	0.9 (0.4-1.8)	1
CNG40001939	99192883	C	T	0.04	0.02	3×10^{-1}	2.4 (0.4-13.7)	G
CNG40001938	99192925	-	T	0.00	0.01	3×10^{-1}	(0.4	G
CNG40001777	99193009	T	C	0.07	0.11	3×10^{-1}	0.7 (0.3-1.6)	G
rs12721631	99193363	T	C	0.04	0.02	3×10^{-1}	2.4 (0.4-13.4)	G
CNG40001775	99193585	C	T	0.00	0.01	3×10^{-1}	(0.4	G
Exon 13								
$\begin{aligned} & \text { CNG40001774 } \\ & \text { (Pro488Thr) } \end{aligned}$	99193741	A	-	0.00	0.01	3×10^{-1}	-	G
Intron 12								
CNG29950523	99193843	C	T	0.01	0.00	3×10^{-1}	-	G
CNG29950522	99193911	G	A	0.08	0.10	5×10^{-1}	0.8 (0.3-1.9)	G
Exon 12								
rs4986910 (Met445Thr)	99196460	C	T	0.00	0.01	3×10^{-1}	-	1
Intron 11								
CNG40001773	99197591	T	C	0.00	0.01	3×10^{-1}	-	G
Exon 11								
CNG40001772 (Thr363Met)	99197765	T	C	0.01	0.00	3×10^{-1}	-	G
CNG40001771 (Val359Glu)	99197777	A	T	0.00	0.01	4×10^{-1}	-	G
Intron 10								
rs12721617	99197847	C	A	0.00	0.03	6×10^{-2}	-	G
rs4646440	99198806	T	C	0.00	0.01	3×10^{-1}	-	1
rs2242480	99199402	A	G	0.04	0.10	1×10^{-1}	0.4 (0.1-1.3)	G
Intron 7								
rs4646437	99203019	T	C	0.07	0.10	4×10^{-1}	0.7 (0.3-1.7)	G
CNG40001765	99203108	C	T	0.01	0.00	3×10^{-1}	-	G
rs2246709	99203655	C	T	0.30	0.31	9×10^{-1}	1.0 (0.6-1.5)	1
rs2687116	99203879	G	T	0.00	0.06	1×10^{-2}	-	G
Exon 7								
CNG40001763 (Lys209Lys)	99203956	A	G	0.00	0.01	3×10^{-1}	-	G
Intron 6								
CNG29950512	99204252	T	C	0.05	0.10	2×10^{-1}	0.5 (0.2-1.4)	G
Intron 2								
rs2687105	99214882	T	A	0.00	0.04	2×10^{-2}	-	I
Intron 1								
CNG40001764	99215762	-	ATT	0.00	0.01	4×10^{-1}	-	G
rs6957392	99219399	A	G	0.00	0.01	3×10^{-1}	-	G
5' downstream sequence								
rs2740574	99220032	G	A	0.00	0.04	2×10^{-2}	-	I
rs11773597	99220387	G	C	0.04	0.03	5×10^{-1}	1.5 (0.5-5.0)	1
rs1851426	99220872	T	C	0.00	0.04	2×10^{-2}	-	1

Supplementary Table 2b: Associations with myopathy for SNPs within CYP3A4 (+/- 10kb) from candidate genotyping and imputation in SEARCH

Genotyping based on 54 cases and 62 controls with sufficient DNA and imputation based on the 85 cases and 90 controls in Supplementary Table 1. Alleles codings are in reverse orientation (negative strand).

rs4149056 genotype	$r s 2306283$ genotype	No. of participant s	LDL-cholesterol (mg/dL)			Percent (SE) reduction	Joint test for trend by genotype in \% reduction (SE)
			Mean (SD) at screening	Mean (SD) at randomisation	Mean (SE) reduction		
TT	AA	5630	130.0 (31.7)	76.6 (25.2)	53.4 (0.4)	40.6\% (0.20)	
TT	AG	5211	130.0 (31.0)	76.2 (24.8)	53.8 (0.4)	40.9\% (0.21)	
TT	GG	1231	131.2 (31.0)	75.5 (24.0)	55.7 (0.8)	42.0\% (0.42)	
CT	AA	620	129.6 (30.6)	78.6 (25.5)	51.1 (0.8)	38.8\% (0.62)	-1.28\% (0.25) per rs4149056C allele [p 0 0001]
CT	AG	2516	131.2 (31.0)	78.2 (23.6)	53.0 (0.4)	39.6\% (0.30)	
CT	GG	1092	130.4 (32.1)	76.2 (24.8)	54.2 (0.8)	40.8\% (0.46)	0.62% (0.18) per rs2306283 G allele $[p=0.0005]$
CC	AA	24	130.0 (24.4)	77.0 (19.4)	53.0 (4.6)	40.3\% (2.73)	
CC	AG	122	127.3 (31.0)	77.4 (26.3)	49.9 (1.9)	39.1\% (1.28)	
CC	GG	214	130.8 (32.1)	78.9 (23.6)	51.9 (1.5)	39.1\% (0.91)	

Supplementary Table 3: LDL-cholesterol concentrations and reductions with 40 mg simvastatin daily in HPS, subdivided by rs4149056 and rs2306283 SLCO1B1 genotypes

Supplementary Table 4

Previously reported studies of myopathy, myalgia and intolerance								
Author	Hypotheses investigated	Gene	Candidate gene SNP or haplotype	SNP frequency	Statin therapy	Cases/ Controls	Endpoint	Lowest p-value ${ }^{\dagger}$
Genes with $\mathbf{p}<0.05$ associations (including other studies of the same gene with $\mathbf{p}>0.05$ results)								
Morimoto ${ }^{1,2}$	152 SNPs in 8 genes	SLCO1B1	$\begin{aligned} & \text { *15 haplotype: } \\ & \text { rs4149056 } \\ & \text { rs2306283 } \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.39 \end{aligned}$	pravastatin/ atorvastatin	<10/26	Myopathy	<0.01
Hermann ${ }^{3}$	9 SNPs in 3 genes	SLCO1B1	rs4149056 rs2306283 rs11045819	$\begin{aligned} & 0.13 \\ & 0.39 \\ & 0.23 \end{aligned}$	atorvastatin	13/15	Myalgia	$\begin{aligned} & >0.05 \\ & >0.05 \\ & >0.05 \end{aligned}$
Morimoto ${ }^{2}$	152 SNPs in 8 genes	$\begin{aligned} & \text { ABCB1/ } \\ & \text { MDR1 } \end{aligned}$	rs2032582	0.39	simvastatin/ atorvastatin	<10/26	Myopathy	<0.05
Fiegenbaum ${ }^{4}$	5 SNPs in 3 genes	$\begin{aligned} & \text { ABCB1/ } \\ & \text { MDR1 } \end{aligned}$	```Haplotype : rs1128503 [1236T] rs2032582 [2677 non-G] rs1045642 [3435T]```	$\begin{aligned} & 0.46 \\ & 0.49 \\ & 0.56 \end{aligned}$	simvastatin	15/99	Myalgia	<0.03
Hermann ${ }^{3}$	9 SNPs in 3 genes	$\begin{aligned} & \text { ABCB1/ } \\ & \text { MDR1 } \end{aligned}$	$\begin{aligned} & \text { rs2229109 [1199A] } \\ & \text { rs1128503 [1236T] } \\ & \text { rs2032582 }[2677 \text { non-G] } \\ & \text { rs1045642 }[3435 T] \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.37 \\ & 0.63 \\ & 0.57 \end{aligned}$	atorvastatin	13/15	Myalgia	$\begin{aligned} & >0.05 \\ & >0.05 \\ & >0.05 \\ & >0.05 \end{aligned}$
Frudakis ${ }^{5}$	388 SNPs in 23 genes	$\begin{aligned} & \text { ABCB1/ } \\ & \text { MDR1 } \end{aligned}$	rs1045642 [3435T]	0.46	atorvastatin	51/55	Muscle events	>0.05
Frudakis ${ }^{5}$	388 SNPs in 23 genes	CYP2D6	*4 haplotype : rs1065852 [100T] rs3892097 [1846A]	$\begin{aligned} & 0.10 \\ & 0.18 \end{aligned}$	atorvastatin simvastatin	136/296	Muscle events	0.001
Zuccaro ${ }^{6}$	8 SNPs in 3 genes	CYP2D6	*4 haplotype : rs1065852[100T] rs3892097 [1846A]	$\begin{aligned} & 0.10 \\ & 0.18 \end{aligned}$	simvastatin/ fluvastatin	17/12	Myalgia	>0.05
Mulder ${ }^{7}$	4 mutations in 1 gene	CYP2D6	*4 haplotype : rs1065852 [100T] rs3892097 [1846A]	$\begin{aligned} & 0.10 \\ & 0.18 \end{aligned}$	simvastatin	26/61	Statin intolerance	0.0008
Oh ${ }^{8}$	2 SNPs in 1 gene	COQ2	Haplotype: rs4693075 rs6535454	$\begin{aligned} & 0.34 \\ & 0.23 \end{aligned}$	atorvastatin/ rosuvastatin/ other statin	133/158	Statin intolerance (myopathy)	0.007

Findings in SEARCH case-control study		
SNP (r^{2} to reported SNP)	Trend p -value	Genotypic p-value
rs4149056	2×10^{-9}	1×10^{-8}
rs2306283	5×10^{-1}	5×10^{-1}
rs4149056	2×10^{-9}	1×10^{-8}
rs2306283	5×10^{-1}	5×10^{-1}
rs11045819	7×10^{-3}	2×10^{-2}
rs6949448 (0.93)	4×10^{-1}	6×10^{-1}
rs1202169 (1.00)	5×10^{-1}	6×10^{-1}
rs6949448 (0.93)	4×10^{-1}	6×10^{-1}
rs6949448 (0.52)	4×10^{-1}	6×10^{-1}
rs4148732 (0.38)	$1 \times 10^{+0}$	8×10^{-1}
rs1202169 (1.00)	5×10^{-1}	6×10^{-1}
rs6949448 (0.93)	4×10^{-1}	6×10^{-1}
rs6949448 (0.52)	4×10^{-1}	6×10^{-1}
rs6949448 (0.52)	4×10^{-1}	6×10^{-1}
rs764481 (NA)	6×10^{-1}	7×10^{-1}
rs764481 (NA)	6×10^{-1}	7×10^{-1}
rs764481 (NA)	6×10^{-1}	7×10^{-1}
rs4693596 (1.00)	6×10^{-1}	4×10^{-1}
rs6535450 (0.70)	2×10^{-1}	5×10^{-1}

Supplement	ry Table 4 (c	continued)									
Vladutiu ${ }^{\text {a }}$	11 SNPs in 3 genes	CPT2 PYGM AMPD1	CPT2: P50H S113L Q413fs R503C G549D R631C PYGM: R49X G240S AMPD1: rs17602729 [Q12X] P48L rs34526199 [K287I]	0.00 0.01 0.02	atorvastatin/ simvastatin/ cerivastatin/ pravastatin/ lovastatin/ gemfibrozil/ fenofibrate	110/248	Statininduced myalgia	<0.0001 (for any variant allele in CPT2, PYGM or AMPD1)	$\begin{aligned} & \text { rs17108140 (NA) } \\ & \text { rs477549 (NA) } \\ & \text { rs2268697 (NA) } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-1} \\ & 5 \times 10^{-1} \\ & 5 \times 10^{-1} \end{aligned}$	$\begin{gathered} 2 \times 10^{-1} \\ 4 \times 10^{-1} \end{gathered}$
Ruano ${ }^{10}$	14 SNPs in 9 genes	HTR3B	rs2276307	0.17	atorvastatin/ simvastatin/ pravastatin	51/144	Myalgia	0.007	rs2276307 (1.00)	3×10^{-1}	6×10^{-1}
Ruano ${ }^{10}$	14 SNPs in 9 genes	HTR7	rs1935349	0.12	atorvastatin/ simvastatin/ pravastatin	51/144	Myalgia	0.026	No SNPs in this ge	in Illum	18K panel
Genes with	p>0.05 associat	tion only									
Morimoto ${ }^{2}$	152 SNPs in 8 genes	VLCAD/ ACADVL	rs2230178 [128A]	rare	pravastatin/ atorvastatin/ simvastatin	<10/26	Myopathy	>0.05	rs222853 (NA)	4×10^{-1}	-
Morimoto ${ }^{2}$	152 SNPs in 8 genes	3 Other in considere	ted myopathy genes ot reported		pravastatin/ atorvastatin/ simvastatin	<10/26	Myopathy	>0.05			
Morimoto ${ }^{2}$	152 SNPs in 8 genes	$\begin{aligned} & \text { ABCC2/ } \\ & M R P 2 \end{aligned}$	2 SNPs (not specified)	?	pravastatin/ atorvastatin/ simvastatin	<10/26	Myopathy	>0.05	rs2002042 (NA)	2×10^{-1}	3×10^{-2}
Morimoto ${ }^{2}$	152 SNPs in 8 genes	CYP3A4	1 SNP (not specified)	?	pravastatin/ atorvastatin/ simvastatin	<10/26	Myopathy	>0.05	rs2740574 (NA) imputed	2×10^{-2}	5×10^{-2}
Fiegenbaum ${ }^{4}$	5 SNPs in 3 genes	CYP3A4	*1b haplotype: rs2740574 [-392G]	0.03	simvastatin	15/99	Myalgia	>0.05	rs2740574 (1.00) imputed	2×10^{-2}	5×10^{-2}
Fiegenbaum ${ }^{4}$	5 SNPs in 3 genes	CYP3A5	* 3 haplotype: rs776746 [6986G]	0.91	simvastatin	15/99	Myalgia	>0.05	rs776746 (1.00)	4×10^{-2}	1×10^{-1}
Zuccaro ${ }^{6}$	8 SNPs in 3 genes	CYP3A5	* 3 haplotype: rs776746 [6986G]	0.87	simvastatin/ atorvastatin	34/39	Myalgia	>0.05	rs776746 (1.00)	4×10^{-2}	1×10^{-1}
Hermann ${ }^{3}$	9 SNPs in 3 genes	CYP3A5	*2: rs28365083 [27289A] *3: rs776746 [6986G]	$\begin{aligned} & 0.00 \\ & 0.93 \end{aligned}$	atorvastatin	13/15	Myalgia	>0.05	$\begin{aligned} & \text { rs4646458 (NA) } \\ & \text { rs776746 (1.00) } \end{aligned}$	$\begin{aligned} & 4 \times 10^{-1} \\ & 4 \times 10^{-2} \end{aligned}$	1×10^{-1}

Supplementary table 4 (continued)									$\begin{array}{lll} \text { rs2185570 (0.83) } & 1 \times 10^{-1} & 2 \times 10^{-1} \\ \text { rs1057910(1.00) } & 5 \times 10^{-3} & 2 \times 10^{-2} \end{array}$		
Zuccaro ${ }^{6}$	8 SNPs in 3 genes	CYP2C9	*2: rs1799853 [C430T] *3: rs1057910 [1075C]	$\begin{aligned} & 0.11 \\ & 0.07 \end{aligned}$	simvastatin/ fluvastatin/ rosuvastatin	18/14	Myalgia	>0.05			
Frudakis ${ }^{5}$	388 SNPs in 23 genes: CYP3A4, CYP3A7, CYP3A5, CYP2C9, CYP2E1, CYP1A1, CYP1A2, PON1, AHR, CYP2C8, CYP1B1, GSTM1, GSTP1, PON3, CYP2B6, CYP4B1, CYP2A6, HMGCR, OCA2, MVK, CYP2C19, NAT2				atorvastatin	51/55	Muscle events	$\begin{aligned} & >0.006 \\ & \text { (Bonferroni- } \\ & \text { corrected) } \end{aligned}$	All SNPs in these genes associated $\mathrm{p}>10^{-5}$		
Ruano ${ }^{10}$	14 SNPs in 9 genes: HTR1D, HTR2A, HTR2C, HTR3A, HTR5A, HTR6, SLC6A4.				atorvastatin/ simvastatin/ pravastatin	51/144	Myalgia	>0.05	All SNPs in these genes associated $\mathrm{p}>10^{-5}$		

Supplementary Table 4: Previous candidate gene studies of statin-induced myopathy, myalgia or intolerance (also included in Supplementary Table 5); and findings for associations of these genes with myopathy in SEARCH

SNP frequency from reference where provided, otherwise from HapMap CEU panel. NA = not ascertained. ${ }^{\dagger}$ No allowance for multiple hypothesis testing (unless stated). SEARCH finding given for SNP within gene with lowest p-value.

Supplementary Table 5

Supplementary Table 5 (continued)

Transport of statins out of liver via bile for elimination					
ABCB1/ MDR1	7		18	0.1	1.7
ABCC2/	10	7	0.2	1.4	
MRP2					

2677G>A associated with abnormal increase in plasma creatine kinase or severe muscle complaints in up to 10 Japanese patients taking simvastatin or atorvastatin ($p<0.05$) with compared to 26 control patients also receiving statins. ${ }^{2}$
2677non-G, 1236T and 3435T alleles less frequent in 17 adverse drug reaction cases compared to 99 controls after treatment with $20 \mathrm{mg} / \mathrm{d}$ simvastatin for 6 months ($p<0.05$). ${ }^{4}$
G1199A, C1236T, G2677A or T and C3435T allele frequencies were not different in 13 cases with "atorvastatin-related myopathy" and 15 healthy controls (who had taken 10 mg atorvastatin for 1 week without muscle symptoms). The cases had muscular side-effects related to statin therapy reported (case subjects were termed atorvastatin-induced as there was severe muscular pain on atorvastatin, rapid improvement with withdrawal of atorvastatin and repeated symptoms on rechallenge with atorvastatin). ${ }^{3}$ C3435T no evidence of association with muscle events (myalgia; statin mypathy; other muscle-related symptoms such as weakness, cramps, spasms, soreness and twitching; CK elevation; myositis with CK elevations; and rhabdomyolysis with CK levels >10xULN) in 51 cases (where the condition was attributed specifically to atorvastatin or other statin therapy by a physician) and 55 controls taking atorvastatin. ${ }^{5}$ No difference in frequencies of 2 SNPs in 10 Japanese patients with abnormal increase in plasma creatine kinase or severe muscle complaints compared to 26 control patients also receiving statins. ${ }^{2}$

Metabolism of statins within liver to active and inactive metabolites					
UGT1A1	2	10	0.05	1.9	Association tests for 12 SNPs and 1 insertion/deletion in 33 myopathy cases and 101 controls from SEARCH found no association (2003; unpublished).
UGT1A3	2	13	0.05	1.9	
UGT2B7	4	3	0.9	1.0	
CYP2C9 (Cytochrome P450 2D6)	10	13	0.005	3.7	Amiodarone is a moderate inhibitor. No differences in genotype frequencies between 18 cases with muscular symptoms and 14 controls taking simvastatin, fluvastatin or rosuvastatin. ${ }^{6}$
CYP2C19	10	7	0.01	2.9	
CYP2C8 (Cytochrome P450 2C8) CYP2D6	10	7	0.02	1.8	Involved with amiodarone N-deethylation in the human liver. ${ }^{23}$
CYP2D6 (Cytochrome P450 2D6)	22	2	0.6	1.1	No differences in allele frequencies of *1, *4 or $2 \times \mathrm{N}$ alleles between 18 cases of muscle pain recorded on standardised medical record review form after treatment with simvastatin or fluvastatin compared to 12 controls taking simvastatin or fluvastatin, but reduced CYP2D6 metabolism (such as with *1/*4 alleles) was associated with larger LDL cholesterol reductions with simvastatin and fluvastatin. ${ }^{6}$ *4 allele (captured by rs1058174, rs2267446) associated ($p<0.001$) with muscle events (myalgia, myopathy, rhabdomyolysis) in 136 cases and 296 controls previously taking simvastatin or atorvastatin. ${ }^{5}$ *4 allele associated ($p=0.0008$) with statin intolerance on simvastatin in 26 cases and 61 controls. ${ }^{7}$

Supplementary Table 5 (continued)

Metabolism of statins within intestinal and liver cells to active and inactive metabolites

CYP3A4 (Cytochrome P450 3A4)	7	$\begin{gathered} 0 \\ {[20]} \end{gathered}$	[0.01]	[not estimat ed]	No association in 17 adverse drug reaction cases compared to 99 controls after treatment with $20 \mathrm{mg} / \mathrm{d}$ simvastatin for 6 months. ${ }^{4}$ No difference in frequencies of 1 SNP in 10 Japanese patients with abnormal increase in plasma creatine kinase or severe muscle complaints taking simvastatin or atorvastatin compared to 26 control patients also receiving statins. ${ }^{2}$ The A-290G variant was associated with higher LDL cholesterol compared to non-variant carriers after treatment with $10 \mathrm{mg} / \mathrm{d}$ atorvastatin (AA+AG vs GG $p=0.04$). The percentage change in LDL cholesterol after treatment was not significantly different in genotype groups (AA+AG n=332; GG $n=8, p=0.113$). ${ }^{24}$
CYP3A5 (Cytochrome P450 3A5)	7	5	0.04	3.3	No association in 17 adverse drug reaction cases compared to 99 controls after treatment with $20 \mathrm{mg} / \mathrm{d}$ simvastatin for 6 months. ${ }^{4}$ No evidence of higher incidence of toxicity with *3 compared to *1 in 34 cases with muscular symptoms and 39 controls taking simvastatin or atorvastatin. ${ }^{6}$ *2 allele ($27289 \mathrm{C}>\mathrm{A}$) and *3 allele ($6986 \mathrm{G}>\mathrm{A}$) not associated with myalgia in 13 cases and 15 controls taking atorvastatin. ${ }^{3}$ 1 year of atorvastatin/simvastatin/lovastatin associated with smaller percentage reduction ($p=0.03$) in total cholesterol from baseline in those with the CYP3A5*1 allele ($n=7$) than those with the CYP3A5*3 allele ($\mathrm{n}=39$). ${ }^{25}$
Vascular genes associated with creatine kinase activity during statin therapy					
NOS3 (Nitric oxide synthase 3)	7	4	0.2	1.3	Produces nitric oxide (NO) from L-arginine in endothelial cells. NO inhibits smooth muscle contraction and platelet aggregation. rs1799983 (D298E) associated ($p=0.005$) with log creatine kinase levels in 102 patients taking atorvastatin ($10 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$) or simvastatin ($5 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$). ${ }^{26}$
AGTR1 (Angiotensin II receptor, Type 1)	3	7	0.02	1.9	Encodes the type I receptor for angiotensin II and mediates the cardiovascular effects of angiotensin II. rs12695902 associated ($p=0.002$) with log creatine kinase levels in 102 patients taking atorvastatin ($10 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$) or simvastatin ($5 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$). ${ }^{26}$

Serotonergenic neurotransmission; pain perception and transduction of nociceptive stimuli

HTR3B	11	9	0.1	1.4	Encodes homologous ligand-gated ion channels that may be involved in psychiatric disorders. Risk allele in rs2276307 associated ($p=0.007$) with 14% higher risk of myalgia in 195 patients (39 definite myalgia, 12 probable myalgia and 144 no myalgia) taking atorvastatin ($10 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$) or simvastatin ($5 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$). ${ }^{10}$
HTR7	10	0			Encodes a serotonin receptor that is a possible schizophrenia susceptibility factor, with additional roles in pain. Risk allele in rs1935349 associated ($p=0.026$) with 13% higher risk of myalgia in 195 patients (39 definite myalgia, 12 probable myalgia and 144 no myalgia) taking atorvastatin ($10 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}$) or simvastatin $(5 \mathrm{mg}-80 \mathrm{mg} / \mathrm{d}) .{ }^{10}$

Inherited metabolic myopathies					
CPT2 (carnitine palmitoyltran sferase 2)	1	5	0.1	1.8	Associated with carnitine palmitoyltransferase II deficiency. 3.6% of 110 cases with muscle symptoms while taking statins were CPTII deficiency carriers compared to 0% of the statin-treated control group. ${ }^{9}$
PYGM	11	2	0.5	1.3	Associated with myophosphorylase deficiency (McArdle disease; glycogen storage disease type V). 12.3% of 110 patients with muscle symptoms while taking statins were carriers of McArdle disease R49X mutation, 0.9% had McArdle disease compared to 0.9% in the treated controls. ${ }^{9}$
AMPD1	1	4	0.5	1.2	Associated with myoadenylate deaminase defiency. Homozygosity for mutations in this gene was found in 7 of 110 (6.5%) drug-induced myopathies, compared to 2 of 116 (1.7\%) asymptomatic statin treated subjects. ${ }^{9}$
RYR1 (ryanodine receptor 1)	19	20	0.06	1.5	Primary gene responsible for central core disease, which is a congenital myopathy predisposing to susceptibility for malignant hyperthermia (pharmacogenetic disorder of skeletal muscle after exposure to anesthetics). ${ }^{27}$
COQ2	4	3	0.1	1.6	CoQ10 deficiency is the most common defect found in muscle. CoQ10 is essential in mitochondria for the transport of electrons through the respiratory chain. In a study of 133 myopathy cases compared to 158 matched controls taking statin, the OR for rs4693075 was 2.3 (1.1 to 4.8) in a recessive model ($p=0.019$) and 2.6 (1.3 to 5.3) for a haplotype with rs6535454 (recessive; $\mathrm{p}=0.007$). ${ }^{8}$
$\begin{aligned} & \hline \text { ACADVL/ } \\ & \text { VLCAD } \end{aligned}$	17	2	0.4	1.5	Inherited rhabdomyolysis gene. No difference in genotype frequencies in 10 Japanese patients with abnormal increases in plasma creatine kinase or severe muscle complaints taking simvastatin or atorvastatin compared to 26 control patients also receiving statins. ${ }^{2}$

Supplementary Table 5: Genes previously reported to be associated with statin-induced myopathy, statin intolerance or statin pharmacokinetics; and associations with SNPs in these genes ($+/-10 \mathrm{~kb}$) with myopathy in SEARCH

Supplementary Table 6

Study (population)	Statin and dose	Number of subjects	Pharmacokinetic variable	Mean (SD) of pharmacokinetic variable by rs4149056 genotype			P-value for trend or for TT vs CT or CC	\% increase (95\% CI) per C allele
				TT	CT	CC		
Area under the plasma concentration-time curve (ng.h/ml) $\dagger \dagger$								
Lee 2005** ${ }^{15}$ (white)	Rosuvastatin 40mg	25+6+5	Rosuvastatin AUC (0-time last obs. conc.)	192 (75)	204 (113)	416 (228)	$>0.05,<0.05$	$39(14,69)$
Lee 2005** ${ }^{15}$ (Malay)	Rosuvastatin 40mg	$26+9+0$	Rosuvastatin AUC (0-time last obs. conc.)	400 (238)	454 (251)		Not reported	$14(-27,77)$
Lee 2005** ${ }^{15}$ (Chinese)	Rosuvastatin 40mg	$29+6+0$	Rosuvastatin AUC (0-time last obs. conc.)	485 (181)	579 (229)		Not reported	$19(-14,66)$
Lee 2005** ${ }^{15}$ (Asian-Indian)	Rosuvastatin 40 mg	$30+5+0$	Rosuvastatin AUC (0-time last obs. conc.)	348 (185)	378 (187)		Not reported	$9(-34,79)$
Pasanen $2006{ }^{20}$ (Caucasian)	Simvastatin 40 mg	16+11+4	Simvastatin (lactone) $\operatorname{AUC}(0-\infty)$	26.4 (10.5)	31.9 (17.6)	37.9 (14.7)	Not incl as same study as next row.	
Pasanen $2006{ }^{20}$ (Caucasian)	Simvastatin 40 mg	16+11+4	Simvastatin acid AUC ($0-\infty$)	16.4 (6.4)	20.1 (10.3)	52.7 (12.5)	$<0.001 \text { for CC }$ vs TT or TC	$61(30,100)$
Pasanen $2007{ }^{14}$ (white)	Atorvastatin 20 mg	16+12+4	Atorvastatin AUC(0-)	24.2 (8.6)	36.2 (20.3)	59.3 (17.4)	0.046, <0.001	$54(24,92)$
Pasanen $2007{ }^{14}$ (white)	Rosuvastatin 10 mg	16+12+4	Rosuvastatin AUC (0-)	35.0 (18.1)	55.0 (22.7)	56.7 (5.1)	>0.05, 0.002	$35(8,69)$
Niemi $2006{ }^{18}$ (white)	Fluvastatin 40 mg	16+12+4	Fluvastatin $\mathrm{AUC}(0-\infty)$	422.7 (132.1)	479.5 (215.0)	503.4 (251.2)	$>0.05, \mathrm{p}>0.05$	$10(-9,34)$
Niemi $2006{ }^{18}$ (white)	Pravastatin 40mg	16+12+4	Pravastatin AUC (0-)	150.3 (78.1)	164.8 (85.7)	287.4 (102.9)	0.04: CT vs CC 0.02: TT vs CC	$29(1,66)$
Niemi $2004{ }^{17}$ (white)	Pravastatin 40mg	$28+11+2$	Pravastatin AUC(0-12)	89.5(64.0)	184.7(105.0)	140.1 (39.3)	0.003, 0.64	$62(13,132)$
Mwinyi 2004 $\dagger{ }^{19}$ (white)	Pravastatin 40 mg	20+10+0	Pravastatin AUC(0-6)	94.7 (54.6)	163.0 (64.6)	-	0.006	$72(16,157)$
Nishizato $2003 \dagger^{12}$ (Japanese)	Pravastatin 10 mg	12+10+1	Pravastatin AUC ($0-\infty$)	50.6 (19.9)	66.9 (21.8)	111.8 (0)	Not reported	$38(5,82)$
Maeda 2006 $\dagger{ }^{13}$ (Japanese)	Pravastatin 10 mg	12+11+0	Pravastatin AUC(0-24)	58.2 (21.4)	55.1 (20.4)	-	Not reported	-5 (-30, 28)
Chung 2005† ${ }^{16}$ (Korean)	$\begin{aligned} & \text { Pitavastatin } \\ & 1-8 \mathrm{mg} \end{aligned}$	$13+11+0$	Dose-normalised AUC ($0-\infty$) ($\mathrm{ng} . \mathrm{h} / \mathrm{ml} / \mathrm{mg}$)	49.6 (12.7)	68.1(16.3)		0.004	$37(13,68)$
Overall*			\% increase (95\% CI)	vs TT group:	$28(17,40)$	$97(64,137)$	Per C allele:	$34(25,44)$

Elimination of statin: renal or non-renal clearance (L. $\mathrm{kg}^{-1} \mathrm{~h}^{-1}$; unless stated)								
Nishizato $2003 \dagger^{12}$ (Japanese)	Pravastatin 10 mg	12+10+1	Pravastatin non-renal	1.88 (0.59)	1.08 (0.34)	0.28 (0)	Not reported	-51 (-61, -38)
Nishizato $2003 \dagger{ }^{12}$ (Japanese)	Pravastatin 10 mg	12+10+1	Pravastatin renal clearance	0.44 (0.09)	0.46 (0.13)	0.51 (0)	Not reported	$5(-12,24)$
Maeda 2006 $\dagger{ }^{13}$ (Japanese)	$\begin{aligned} & \text { Pravastatin } \\ & 10 \mathrm{mg} \end{aligned}$	12+11+0	Pravastatin renal clearance (L/h)	17.1 (6.1)	14.6 (3.0)	-	Not reported	-15 (-33, 8)

Supplementary Table 6: In vivo studies of the association between statin elimination and SLCO1B1 rs4149056 SNP

* For the overall result, there was no evidence of heterogeneity between studies in log mean AUC by genotype ($p=0.7$ for interaction term for study and number of C alleles).
** SD for AUC estimated from geometric mean and confidence intervals.
\dagger Results reported only for multi-marker haplotypes (4 of the 5 studies mentioned in Discussion of main paper). Genotype mean and SD estimated by combining the relevant haplotypes.
$\dagger \dagger$ Area under the plasma concentration-time curve between time ${ }_{1}$ and time ${ }_{2}$ (in hours) denoted by AUC (time - $_{1}$-time ${ }_{2}$)

Supplementary Figure

Expected value of chi-squared given its rank within the chi-squared values for all SNPs

Supplementary Figure: Trend test chi-squared values for each measured SNP versus expected values given rank (quantile-quantile plot)

The shaded area shows the 95\% confidence limits of the expected distribution under the null hypothesis of no association at any locus. A small number of points outside the bounds of the shaded area may indicate a true disease association, while inflation of the observed chi-squared statistics within the tail-end of the distribution may indicate SNP allele frequency differences between case and control groups due either to true disease association or to population substructure and artificial associations.

Supplementary Methods

Resequencing of SLCO1B1 and CYP3A4 genes: This was performed using PCR amplicons generated by PRIMER3 to cover the whole set of exons and parts of the introns (15 fragments for SLCO1B1; 18 fragments for CYP3A4). PCR was undertaken in 8-uL reaction volumes using 1 unit of Taq DNA polymerase (Abgene, Epsom, UK) and 20ng of genomic DNA (primer sequences in Supplementary Methods Tables 1a \& b). PCR products were purified using Bio-gel P100 Gel (Bio-Rad Inc, Hercules, CA, USA) and sequenced using the Bigdye Terminator cycle sequencing chemistry method (Applied Biosystems, Palo Alto, CA, USA). Reactions were purified using Sephadex G-50 Superfine (Amersham Biosciences, Uppsala, Sweden) before applying the products to ABI 3730 DNA analysers. Detection of genetic variants was performed with the Genalys program (http://www.cng.fr).

Quantile-quantile plots: In a quantile-quantile plot, a set of independent observations $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ sampled from a distribution with cumulative distribution function $F(y)\left(1_{1}{ }^{2}\right.$ in the present context) is first ordered ($y_{(1)} \leq y_{(2)} \leq$ $\left.\ldots \leq y_{(n)}\right)$ and then $y_{(i)}$ is plotted against the expected value of $y_{(i)}$, which is approximated by $F^{-1}([i-0.5] / n)$. $F\left(y_{(i)}\right)$ follows a beta distribution, with shape parameters i and $(n-i+1) .{ }^{28}$ Expected values and 95% confidence limits were calculated point by point using standard statistical functions. (This follows the approach used by the Wellcome Trust Case Control Consortium which noted that these point by point estimates may slightly underestimate the confidence limits. ${ }^{29}$) In the present genome-wide association study, comparison of the chisquared value for each SNP versus its expected value given rank order followed the expected distribution under the null hypothesis of no association at any locus, and the median of the 316,184 chi-squared values was not statistically different from the expected value for null SNPs. Hence, it was not considered necessary to adjust the associations for genomic control by attributing extra variance in the test statistics to population substructure. ${ }^{30}$

Cumulative and attributable myopathy risk by rs4149056 genotype:

Simple life-table analysis of genotyped cases and controls does not suffice to estimate the cumulative myopathy risk because the controls were selected for not having developed myopathy. Instead, it was estimated as follows among the 5761 participants with European ancestry not on amiodarone at baseline who had been allocated 80 mg simvastatin daily. First, the cumulative probability of still being exposed at time t was estimated from a standard Kaplan-Meier life-table analysis, ${ }^{31}$ with death or stopping study 80 mg simvastatin daily (defined as when supply permanently ceased) as endpoints and with censoring when any myopathy occurred (which was regarded as being prior to stopping treatment if both occurred on the same day). Denote this probability by $e(t)$, and define:
$p_{g}=$ initial proportion with each genotype (g), taken to be in HardyWeinberg equilibrium, with C allele frequency of 0.146 ;
$n_{g}\left(t_{i}\right)=$ number of myopathy cases occurring in subjects of each genotype at each time (t_{i}) that any myopathy cases occurred; and
$S_{g}(t)=$ probability of being free of myopathy at time t, given genotype .

Among the 5761 participants with European ancestry, 75/85 (0.882) of the myopathy cases were successfully genotyped. The cumulative myopathy risk was calculated by a life-table analysis in which the genotyped myopathy cases were the endpoints and the number of participants of genotype g at risk at time t_{i} were:

$$
5761 \times 0.882 \times p_{g} \times e\left(t_{i}\right) \times S_{g}\left(t_{i-1}\right)
$$

Risk attributable to the genotypes CT and CC was calculated as the excess cumulative myopathy risk in these genotypes over that for the TT genotype.

Coverage of the genome-wide screen: Genomic coverage of the Illumina HumanHap300 panel for common SNPs (at $r^{2} \geq 0.8$) in people with European ancestry has been estimated in HapMap CEU samples to be 75%. ${ }^{32}$ Application of this approach to the similar HumanHap300-Duo panel with allowance for the genotyping failure rate in the present study yields an estimated coverage of 74%.

Supplementary Methods Table 1a

Exon number	Name	Sequence	Usage
Exon1	SLCO1B1_P001_PF	AATGGTCTTGCAGTTAATTGGG	PCR
	SLCO1B1_P001_PR	TCCCTTCACCCTGTATCAAACT	PCR
	SLCO1B1_P001_SF	TGGCAACTGGAGTGAACTCTT	sequencing
	SLCO1B1_P001_SR	TTCCCTCTACTCCCACCCTT	sequencing
	SLCO1B1_P002_PF	TCTACTCTGTGCAAGGGGCT	PCR
Exon3	SLCO1B1_P002_SF	TCCAGCATTGACCTAGCAGA	sequencing
	SLCO1B1_P002_SR	TCGTGATCAATCCAAAACCA	PCR and sequencing
	SLCO1B1_P003_PF	TGTTTTTCAGCTGGCTTCCT	PCR
	SLCO1B1_P003_PR	GGTCTAACGTAGGTTGCTCTGAA	PCR
	SLCO1B1_P003_SF	AGAATGTACTGCCACTCCCCT	sequencing
	Exon4	SLCO1B1_P003_SR	TATTGCCAAATTGCCTGTGA

SLCO1B1_P014_SF1	CGTTATGCCCCAATAAAAAGAA	sequencing
SLCO1B1_P014_SR1	AGCTCCTCCTTTTTAACCTCTACC	sequencing
SLCO1B1_P014_SF2	GCTGGGGCAGATAGTGAAAC	sequencing
SLCO1B1_P014_SR2	GCGGCAAATGATCTAGGAAA	sequencing

Supplementary Methods Table 1a: Oligonucleotides used for resequencing SLCO1B1 gene

Exon number	Name	Sequence	Usage
Exon1	CYP3A4ex1_PF	CCTTGGACTCCCCAGTAACA	PCR
	CYP3A4ex1_PR	TCCCACCAGTGAGAGGATTC	PCR
	CYP3A4ex1_SF	CCAACTTCCAAGGTGGAGAA	sequencing
	CYP3A4ex1_SR	CACCATGCCCAGCTAATTTT	sequencing
	CYP3A4ex2_PF	ACTGAGTGGCTGCAGTGATG	PCR
	CYP3A4ex2_SF	TTTTGGTGTCTCATGGTGGA	sequencing
Exon3	CYP3A4ex2_SR	TGTACCTTCCTGGGAACCTG	PCR and sequencing
	JF_51548DA05_F	AACACTGTGCATTCTCTTCTGATG	PCR and sequencing
	Exon4	JF_51548DA05_R	GGCTGAGACTGTCCTCTGTGC

[^0]
Supplementary Appendix References

1. Morimoto K, Oishi T, Ueda S, Ueda M, Hosokawa M, Chiba K. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet 2004; 19:453-5.
2. Morimoto K, Ueda S, Seki N, Igawa Y, Kameyama Y, Shimizu A, et al. OATPC(OATP01B1)*15 is associated with statin-induced myopathy in hypercholesterolemic patients. Clinical Pharmacology \& Therapeutics 2005; 77:P21-P21
3. Hermann M, Bogsrud MP, Molden E, Asberg A, Mohebi BU, Ose L, et al. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with atorvastatin-induced myopathy. Clin Pharmacol Ther 2006; 79:532-9.
4. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78:551-8.
5. Frudakis TN, Thomas MJ, Ginjupalli SN, Handelin B, Gabriel R, Gomez HJ. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics 2007; 17:695-707.
6. Zuccaro P, Mombelli G, Calabresi L, Baldassarre D, Palmi I, Sirtori CR. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res 2007; 55:310-7.
7. Mulder AB, van Lijf HJ, Bon MA, van den Bergh FA, Touw DJ, Neef C, et al. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin Pharmacol Ther 2001; 70:546-51.
8. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis 2007; 6:7
9. Vladutiu GD, Simmons Z, Isackson PJ, Tarnopolsky M, Peltier WL, Barboi AC, et al. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve 2006; 34:153-62.
10. Ruano G, Thompson PD, Windemuth A, Seip RL, Dande A, Sorokin A, et al. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007; 36:329-35.
11. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005; 15:513-22.
12. Nishizato Y, leiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003; 73:554-65.
13. Maeda K, leiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K, et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 2006; 79:427-39.
14. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82:726-33.
15. Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005; 78:330-41.
16. Chung JY, Cho JY, Yu KS, Kim JR, Oh DS, Jung HR, et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2005; 78:342-50.
17. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14:429-40.
18. Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006; 80:35666.
19. Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75:415-21.
20. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16:873-9.
21. Tachibana-limori R, Tabara Y, Kusuhara H, Kohara K, Kawamoto R, Nakura J, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19:375-80.
22. Becquemont L , Neuvonen M, Verstuyft C, Jaillon P, Letierce A, Neuvonen PJ, et al. Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics. Clin Pharmacol Ther 2007; 81:679-84.
23. Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos 2000; 28:130310.
24. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93:104-7.
25. Kivisto KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis R, Fromm MF, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14:523-5.
26. Ruano G, Thompson PD, Windemuth A, Smith A, Kocherla M, Holford TR, et al. Physiogenomic analysis links serum creatine kinase activities during statin therapy to vascular smooth muscle homeostasis. Pharmacogenomics 2005; 6:865-72.
27. Sei Y, Sambuughin NN, Davis EJ, Sachs D, Cuenca PB, Brandom BW, et al. Malignant
hyperthermia in North America: genetic screening of the three hot spots in the type I ryanodine receptor gene. Anesthesiology 2004; 101:824-30.
28. Stirling WD. Enhancements to aid interpretation of probability plots. The Statistician 1982; 31:211-20.
29. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-78.
30. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55:9971004.
31. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 1958; 53:457-481.
32. Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat Genet 2006; 38:659-62.

[^0]: Supplementary Methods Table 1b: Oligonucleotides used for resequencing CYP3A4 gene

