Adjuvant polychemotherapy in oestrogen-receptor-poor breast cancer: meta-analysis of individual patient data from the randomised trials

The Lancet 2008; 371: 29-40

Early Breast Cancer Trialists' Collaborative Group (EBCTCG)

Web site figures

Each figure is in three parts, corresponding to the three endpoints: (i) recurrence, (ii) breast cancer mortality and (iii) death from any cause.

- **Web Fig. 1** Polychemotherapy versus not in ER-poor disease, subdivided first by type of comparison (absence or presence of tamoxifen in both treatment groups) and then by age at randomisation: event rate ratios for recurrence, breast cancer mortality and death from any cause
- **Web Fig. 2** Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of tamoxifen in both treatment groups): event rate ratios for recurrence, breast cancer mortality and death from any cause
- Web Fig. 3 Tamoxifen versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of chemotherapy in both treatment groups): event rate ratios for recurrence, breast cancer mortality and death from any cause
- **Web Fig. 4** Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) and age at randomisation: 10-year probabilities of recurrence, breast cancer mortality and death from any cause
- Web Fig. 5Polychemotherapy versus not in ER-poor disease, by type of comparison
(absence or presence of tamoxifen in both treatment groups) for patients with
entry age < 50: 10-year probabilities of recurrence, breast cancer mortality and
death from any cause
- Web Fig. 6 Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) for patients with entry ages 50-69: 10-year probabilities of recurrence, breast cancer mortality and death from any cause
- Web Fig. 7 Polychemotherapy versus not in ER-poor disease, subdivided first by age at

randomisation and then by nodal status: event rate ratios for recurrence, breast cancer mortality and death from any cause

- Web Fig. 8Polychemotherapy versus not in ER-poor disease, by various subgroups: event
rate ratios for recurrence, breast cancer mortality and death from any cause
- **Web Fig. 9** Polychemotherapy versus not in ER-poor disease: trial details and recurrence, breast cancer mortality and all-cause mortality rate ratios in each of 46 separate trials
- **Web Fig. 10** Tamoxifen versus not in ER-poor disease: trial details and recurrence, breast cancer mortality and all-cause mortality rate ratios in each of 50 separate trials
- **Web Fig. 11** Perioperative polychemotherapy versus no adjuvant cytotoxic in ER-poor disease, subdivided by nodal and menopausal status: trial details and recurrence, breast cancer mortality and all-cause mortality rate ratios in each of 4 separate trials

Web Fig. 1(i). Polychemotherapy versus not in ER-poor disease, subdivided first by type of comparison (absence or presence of tamoxifen in both treatment groups) and then by age at randomisation: event rate ratios for recurrence

Web Fig. 1(ii). Polychemotherapy versus not in ER-poor disease, subdivided first by type of comparison (absence or presence of tamoxifen in both treatment groups) and then by age at randomisation: event rate ratios for breast cancer mortality

Entry age	Deaths/ Allocated	Women Allocated	Polychei Logrank	MO. deaths	Ratio of annual death	rates
Entry age	Foly	control	0-L	010-2	Poly Control	
(a) Polychemothera	apy alone v	ersus no	adjuva	<u>nt</u> (trend'	* χ ₁ ² = 0·0; 2p = 0·99; Ν	S)
< 50	217/915 (23·7%)	260/807 (32·2%)	-28.4	97.8		0·75 (se 0·09)
50 – 59	146/464 (31·5%)	182/479 (38·0%)	–13·8	65·3		0-81 (se 0-11)
60 – 69	96/264 (36·4%)	114/275 (41·5%)	-11·2	40.4		0·76 (se 0·14)
70+	5/14	7/21	_1·5	2∙0		
Unknown	1/4	0/1				
(a) subtotal	465/ 1661 (28·0%)	563/ 1583 (35-6%)	-54-9	205-5		0· 77 (SE 0·06) 2p = 0·0001
(b) Polychemothera	apy plus ta	moxifen v	ersus t	tam alone	<u>e</u> (trend* $\chi_1^2 = 3.8$; 2p =	0.05)
< 50	24/100 (24·0%)	27/85 (31·8%)	_5·7	8-1		0·49 (se 0·25)
50 – 59	274/756 (36·2%)	210/496 (42·3%)	-30·9	92.4		0·72 (se 0·09)
60 – 6 9	323/733 (44·1%)	224/498 (45 · 0%)	-3.7	107.5		0·97 (se 0·09)
70+	21/61	23/55	-3.7	6-9		
Unknown	0/0	0/1				
(b) subtotal	642/ 1650 (38·9%)	484/ 1135 (42·6%)	-44·0	214-8		0· 81 (SE 0·06) 2p = 0·003
(a+b) All polychem	otherapy v	ersus not	(trend	$\chi_1^2 = 1.9;$	2p = 0·17; NS)	
< 50	241/1015 (23·7%)	287/892 (32·2%)	_34 ∙1	105.9		0·72 (se 0·08)
50 – 59	420/1220 (34·4%)	392/975 (40·2%)	_44·7	157.7		0·75 (se 0·07)
60 – 69	419/997 (42·0%)	338/773 (43·7%)	_14·9	147.8		0·90 (se 0·08)
70+	26/75	30/76	<i>_</i> 5·2	8-9		
Unknown	1/4	0/2				
(a+b) Total	1107/ 3311 (33·4%)	1047/ 2718 (38-5%)	-98·9	420-3	↓ 0	0· 79 (se 0·04) 2p < 0·00001
-∎- 99% or <->> 95% co * Difference betwe	nfidence intervals Ben			0 P	0-5 1-0 olychemo. better Polych	1.5 2.0 emo. worse

Web Fig. 1(iii). Polychemotherapy versus not in ER-poor disease, subdivided first by type of comparison (absence or presence of tamoxifen in both treatment groups) and then by age at randomisation: event rate ratios for death from any cause

Entry age	Deaths/wom Allocated Poly	an-years Allocated control	Polychei Logrank O-E	mo. deaths Variance of O-E	Ratio of annual de Poly : Co	eath rates ntrol
(a) Polychemothe	rapy alone v	ersus no	adjuva	<u>nt</u> (trend*	$\chi_1^2 = 0.0; 2p = 0.98$; NS)
< 50	238/9967 (2·4%/y)	276/8356 (3·3%/y)	-28.7	106.0		0·76 (se 0·09)
50 – 59	173/5197 (3·3%/y)	208/4745 (4·4%/y)	_13·9	75 · 8		0·83 (se 0·10)
60 – 69	123/2614 (4∙7%/y)	144/2494 (5·8%/y)	_13·9	51.8		0·76 (se 0·12)
70+	8/144	12/179	-1·7	3.3		
Unknown	1/31	0/0				
(a) subtotal	543/ 17953 (3∙0%/y)	640/ 15774 (4-1%/y)	-58 ∙2	236-9	\diamond	0·78 (se 0·06) 2p = 0·0002
(b) Polychemothe	rapy plus ta	moxifen v	ersus t	tam alone	$\chi_1^2 = 4.2; 2$	p = 0·04)
< 50	25/702 (3·6%/y)	27/560 (4·8%/y)	-5.7	8.0		– 0·49 (se 0·25)
50 – 59	310/6480 (4·8%/y)	222/3750 (5·9%/y)	–28·9	101.0		0·75 (se 0·09)
60 – 69	390/5893 (6·6%/y)	262/3799 (6·9%/y)	-3.6	128.3		– 0.97 (se 0.09)
70+	31/387	30/308	-2·6	10.1		
Unknown	0/0	0/21				
(b) subtotal	756/ 13462 (5⋅6%/y)	541/ 8438 (6·4%/y)	-40.9	247.3	\rightarrow	0·85 (SE 0·06) 2p = 0·009
(a+b) All polycher	notherapy v	ersus not	(trend	$\chi_1^2 = 2.3; 2$	2p = 0·13; NS)	
< 50	263/10669 (2·5%/y)	303/8916 (3∙4%/y)	-34·4	114.0		0·74 (se 0·08)
50 – 59	483/11677 (4∙1%/y)	430/8495 (5∙1%/y)	_42·8	176.8		0·78 (se 0·07)
60 – 69	513/8507 (6∙0%/y)	406/6293 (6·5%/y)	_17·6	180.1		0·91 (se 0·07)
70+	39/531	42/487	_4·2	13.4		
Unknown	1/31	0/21				
(a+b) Total	1299/ 31415 (4.1%/y)	1181/ 24212 (4·9%/y)	-99 ∙0	484·2	\Diamond	0·82 (se 0·04) 2p < 0·00001
-∎ 99% or <>> 95% o	confidence intervals			0 Pc	0.5 1.0 Diychemo. better Pc	1.5 2.0 lychemo. worse

Web Fig. 2(i). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of tamoxifen in both treatment groups): event rate ratios for recurrence

Catagony	Events/ Allocated	Women Allocated	Polycher Logrank	no. event	e <u>Ratio of annu</u>	al event rates
Category	POly	CONTROL	0-E	01 O-E	Poly	
<u>(a) Age < 50</u>						
Poly alone vs. Nil	307/915 (33∙6%)	374/807 (46·3%)	-60.6	133.6	-	0·64 (se 0·07)
Poly + Tam vs. Tam	30/100 (30·0%)	36/85 (42·4%)	-9 ∙3	10.1		0·40 (se 0·21)
(a) subtotal	337/ 1015 (33-2%)	410/ 892 (46·0%)	-70.0	143.7	\diamond	0·61 (SE 0·07) 2p < 0·00001
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 2·	1; 2p = 0	·15; NS		
<u>(b) Age 50 – 59</u>						
Poly alone vs. Nil	180/464 (38·8%)	230/479 (48∙0%)	<i>–</i> 25·7	78·5		0·72 (se 0·10)
Poly + Tam vs. Tam	325/756 (43∙0%)	247/496 (49·8%)	–45·3	1 03·0		0·64 (se 0·08)
(b) subtotal	505/ 1220 (41-4%)	477/ 975 (48-9%)	-71 ∙0	181.5	\diamond	0·68 (SE 0·06) 2p < 0.00001
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 0·	6; 2p = 0	-46; NS		
<u>(c) Age 60 – 69</u>						
Poly alone vs. Nil	117/264 (44·3%)	134/275 (48·7%)	–16·9	46.1		0·69 (se 0·12)
Poly + Tam vs. Tam	368/733 (50·2%)	263/498 (52·8%)	–16·7	119.1		— 0·87 (se 0·09)
(c) subtotal	485/ 997 (48·6%)	397/ 773 (51.4%)	-33-6	165-2	\diamond	0·82 (SE 0·07) 2p = 0·009
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 1.	7; 2p = 0	·19; NS		
- 99% or <->> 95% conf	idence intervals			 0	0.5 1	-0 1.5 2.0
(a+b+c): Difference bei presence/absence of tar	tween polyc n: age–strat	hemotheraj ified $\chi_1^2 = 0$.	oy effects 0; 2p = 0	s in •84; NS	Polychemo. better	Polychemo. worse

Web Fig. 2(ii). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of tamoxifen in both treatment groups): event rate ratios for breast cancer mortality

Category	<u>Deaths/</u> Allocated Poly	Women Allocated control	Polycher Logrank O–E	no. deaths Variance of O–E	Ratio of annu Poly	ial death rates : Control
<u>(a) Age < 50</u>						
Poly alone vs. Nil	217/915 (23·7%)	260/807 (32·2%)	-28 ∙4	97.8	-	0·75 (SE 0·09)
Poly + Tam vs. Tam	24/1 00 (24 ·0%)	27/85 (31·8%)	<i>_</i> 5·7	8.1		0·49 (SE 0·25)
(a) subtotal	241/ 1015 (23·7%)	287/ 892 (32-2%)	-34.1	105.9	- 🔶	0·72 (SE 0·08) 2p = 0·0009
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 1·	3; 2p = 0	·25; NS		
<u>(b) Age 50 – 59</u>					:	
Poly alone vs. Nil	146/464 (31·5%)	182/479 (38·0%)	–13·8	65·3		0⋅81 (se 0⋅11)
Poly + Tam vs. Tam	274/756 (36·2%)	21 0 /496 (42·3%)	-30.9	92·4		0·72 (SE 0·09)
(b) subtotal	420/ 1220 (34-4%)	392/ 975 (40-2%)	-44.7	157.7	- 🔶	0·75 (SE 0·07) 2p = 0·0004
Difference between treatment effects	in 2 catego	ries: χ² = 0·	6; 2p = 0	-45; NS		
<u>(c) Age 60 – 69</u>					:	
Poly alone vs. Nil	96/264 (36·4%)	114/275 (41·5%)	-11·2	4 0 ·4		— 0·76 (se 0·14)
Poly + Tam vs. Tam	323/733 (44·1%)	224/498 (45 · 0%)	<i>_</i> 3·7	1 0 7·5		0·97 (se 0·09)
(c) subtotal	419/ 997 (42·0%)	338/ 773 (43·7%)	-14.9	147.8	\leftarrow	> 0.90 (SE 0.08) 2p = 0.22; NS
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 1.	7; 2p = 0	·19; NS		
- - 99% or 🖘 95% conf	idence intervals			0	0.5 1	-0 1.5 2.0
(a+b+c): Difference be presence/absence of tar	tween polyc n: age–strat	hemothera ified $\chi_1^2 = 0$.	py effect 0; 2p = 0	P sin ·94; NS	olychemo. better	Polychemo. worse

Web Fig. 2(iii). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of tamoxifen in both treatment groups): event rate ratios for death from any cause

<u> </u>	Deaths/wom	nan-years F	Polycher	no. death	S Detio of onnu	al death rates
Category	Poly	control	Ö–E	of O-E	Poly	: Control
<u>(a) Age < 50</u>						
Poly alone vs. Nil	238/9967 (2·4%/y)	276/8356 (3·3%/y)	–28·7	106.0	-	0·76 (se 0·09)
Poly + Tam vs. Tam	25/702 (3·6%/y)	27/560 (4·8%/y)	_5 ∙7	8∙0		0·49 (se 0·25)
(a) subtotal	263/ 10669 (2-5%/y)	303/ 8916 (3·4%/y)	-34.4	114.0	\diamond	0·74 (SE 0·08) 2p = 0·001
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 1.ξ	5; 2p = 0	·23; NS		
<u>(b) Age 50 – 59</u>						
Poly alone vs. Nil	173/5197 (3·3%/y)	208/4745 (4·4%/y)	_13·9	75 · 8		— 0·83 (se 0·10)
Poly + Tam vs. Tam	310/6480 (4·8%/y)	222/3750 (5·9%/y)	–28·9	101.0		0·75 (se 0·09)
(b) subtotal	483/ 11677 (4·1%/y)	430/ 8495 (5⋅1%/y)	-42.8	176-8	-	0·78 (SE 0·07) 2p = 0·001
Difference between treatment effects	in 2 catego	ries: χ² = 0.\$	5; 2p = 0	.50; NS		
<u>(c) Age 60 – 69</u>					:	
Poly alone vs. Nil	123/2614 (4·7%/y)	144/2494 (5·8%/y)	_13·9	51 <i>·</i> 8		0.76 (se 0.12)
Poly + Tam vs. Tam	390/5893 (6∙6%/y)	262/3799 (6·9%/y)	<i>–</i> 3·6	128.3		—— 0·97 (se 0·09)
(c) subtotal	513/ 8507 (6∙0%/y)	406/ 6293 (6·5%/y)	-17.6	180-1	\Leftrightarrow	> 0.91 (SE 0.07) 2p = 0.19; NS
Difference between treatment effects	in 2 catego	ries: χ ₁ ² = 2.∙	1; 2p = 0	·14; NS		
- - - 99% or <i><</i> → 95% confi	dence intervals			 0	0.5 1	
(a+b+c): Difference bet presence/absence of tan	tween polyc n: age–strat	hemotherap ified $\chi_1^2 = 0.0$	oy effect); 2p = 0	in ∙91;NS	Polychemo. better	Polychemo. worse

Web Fig. 3(i). Tamoxifen versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of chemotherapy* in both treatment groups): event rate ratios for recurrence

Category	<u>Events</u> Allocated Tam	Women Allocated control	Tamoxif Lograni O–E	en events Variance of O–E	<u>Ratio of annu</u> Tam	al event rates : Control
<u>(a) Age < 50</u>						
Tam alone vs. Nil	180/440 (40·9%)	147/326 (45·1%)	-16·3	50.6		– 0·72 (se 0·12)
Tam + Poly vs. Poly	951/2819 (33·7%)	879/2727 (32·2%)	13·6	38 4·1	-	– 1·04 (se 0·05)
(a) subtotal	1131/ 3259 (34·7%)	1026/ 3053 (33.6%)	-2.8	434.7	<	> 0.99 (se 0.05) 2p = 0.89; NS
Difference between treatment effect	ts in 2 catego	ories: χ ₁ ² = 5·	7; 2p = 0	.02		
<u>(b) Age 50 – 59</u>						
Tam alone vs. Nil	261/555 (47 ·0 %)	246/486 (50·6%)	_19·1	92·2		0.81 (se 0.09)
Tam + Poly vs. Poly	483/1477 (32·7%)	498/1532 (32·5%)	_11 · 9	201.8		— 0·94 (se 0·07)
(b) subtotal	744/ 2032 (36-6%)	744/ 2018 (36-9%)	-30.9	294.0	\diamond	0.90 (SE 0.06) 2p = 0.07
Difference between treatment effect	ts in 2 catego	ories: $\chi_1^2 = 1$.	4; 2p = 0	-24; NS		
<u>(c) Age 60 – 69</u>		•			I	
Tam alone vs. Nil	253/547 (46·3%)	254/55 0 (46·2%)	_ 3·1	1 00 ·2		0.97 (se 0.10)
Tam + Poly vs. Poly	226/794 (28·5%)	316/859 (36·8%)	-28·7	109.4		0·77 (se 0·08)
(c) subtotal	479/ 1341 (35·7%)	570/ 1409 (40·5%)	-31.8	209.7	\diamond	0.86 (SE 0.06) 2p = 0.03
Difference between treatment effect	ts in 2 catego	pries: $\chi_1^2 = 2$.	8; 2p = 0	.09		
- ■ - 99% or <_> 95% co	nfidence intervals	3		0	0.5 1	0 1.5 2.0
(a+b+c): Difference b esence/absence of cher	etween tamo no: age-stra	xifen effects tified $\chi_1^2 = 1$.	s in 1; 2p = 0	⊤ ⊷29; NS	amoxifen better	Tamoxifen worse

* In the tamoxifen versus not analyses, 3 of the 32 trials were of single-agent chemotherapy.

Web Fig. 3(ii). Tamoxifen versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of chemotherapy* in both treatment groups): event rate ratios for breast cancer mortality

Category	<u>Deaths</u> Allocated Tam	Women Allocated control	Tamoxif Lograni O–E	en deaths Variance of O–E	Ratio of annual death rates Tam : Control		
<u>(a) Age < 50</u>							
Tam alone vs. Nil	132/440 (30·0%)	114/326 (35·0%)	-11·2	42 · 0		— 0·77 (se 0·14)	
Tam + Poly vs. Poly	718/2819 (25 [.] 5%)	673/2727 (24·7%)	6·6	297.7	-	— 1.02 (se 0.06)	
(a) subtotal	850/ 3259 (26.1%)	787/ 3053 (25.8%)	-4.6	339.7	\triangleleft	> 0.99 (SE 0.05) 2p = 0.80; NS	
Difference between treatment effect	ts in 2 catego	ories: $\chi_1^2 = 3$.	1; 2p = 0	-08			
<u>(b) Age 50 – 59</u>		-					
Tam alone vs. Nil	220/555 (39·6%)	201/486 (41 ·4%)	–1 0 ·3	82·2		0·88 (se 0·10)	
Tam + Poly vs. Poly	381/1477 (25·8%)	398/1532 (26·0%)	–12·6	164-1		— 0·93 (se 0·08)	
(b) subtotal	601/ 2032 (29.6%)	599/ 2018 (29.7%)	-22.9	246-2	\Leftrightarrow	O·91 (SE 0·06) 2p = 0·14; NS	
Difference between treatment effect	ts in 2 catego	ories: $\chi_1^2 = 0$.	1; 2p = 0	•72; NS			
<u>(c) Age 60 – 69</u>							
Tam alone vs. Nil	220/547 (40·2%)	226/55 0 (41 ·1%)	-8·3	88.9		0.91 (se 0.10)	
Tam + Poly vs. Poly	190/794 (23·9%)	256/859 (29·8%)	-15·7	90·2	∎	— 0·84 (se 0·10)	
(c) subtotal	410/ 1341 (30.6%)	482/ 1409 (34.2%)	-24.0	179.1	\diamond	0.87 (SE 0.07) 2p = 0.07	
Difference between treatment effect	ts in 2 catego	ories: $\chi_1^2 = 0$.	3; 2p = 0	-59; NS			
- ■ - 99% or < -> 95% cor	nfidence intervals	;		 0	0.5 1.	.0 1.5 2.0	
(a+b+c): Difference b	etween tamo	xifen effects	s in	Т	amoxifen better	Tamoxifen worse	

* In the tamoxifen versus not analyses, 3 of the 32 trials were of single-agent chemotherapy.

Web Fig. 3(iii). Tamoxifen versus not in ER-poor disease, subdivided first by age at randomisation and then by type of comparison (absence or presence of chemotherapy* in both treatment groups): event rate ratios for death from any cause

Allocated Tam 146/4354 (3·4%/y) 763/23516 (3·2%/y)	Allocated control 126/3175 (4·0%/y) 721/23081 (3·1%/v)	Logrank O–E –12·8	47.6	Ratio of annu Tam	0.76 (sc 0.13)
146/4354 (3·4%/y) 763/23516 (3·2%/y)	126/3175 (4·0%/y) 721/23081 (3·1%/v)	-12·8	47·6		0.76 (er 0.13)
146/4354 (3·4%/y) 763/23516 (3·2%/y)	126/3175 (4·0%/y) 721/23081 (3·1%/v)	–12·8	47·6		0.76 (er 0.13)
146/4354 (3·4%/y) 763/23516 (3·2%/y)	126/3175 (4·0%/y) 721/23081 (3·1%/y)	_12·8	47·6		0.76 (e= 0.13)
763/23516 (3·2%/y)	721/23081 (3·1%/v)				— 0.70 (SE 0.13)
		4·8	317·5	-	— 1.02 (se 0.06)
909/ 27870 (3.3%/v)	847/ 26256 (3·2%/v)	-8.0	365-0	\triangleleft	> 0.98 (SE 0.05) 2p = 0.67; NS
in 2 catego	ries: $\chi_{1}^{2} = 3.4$	4; 2p = 0	-07		
_	1				
263/591 0 (4·5%/y)	235/5074 (4·6%/y)	-12·2	96.3		0·88 (se 0·10)
434/11588 (3·7%/y)	448/11852 (3∙8%/y)	–11 ·3	186.5		0·94 (se 0·07)
697/ 17498 (4₊0%/y)	683/ 16926 (4·0%/y)	-23.5	282.7	\Leftrightarrow	> 0.92 (SE 0.06) 2p = 0.16; NS
in 2 catego	ries: χ ² = 0.3	3; 2p = 0	.60; NS		
316/5854 (5·4%/y)	323/5728 (5∙6%/y)	-2·1	127 ∙0		0·98 (se 0·09)
239/5638 (4·2%/y)	315/6102 (5·2%/y)	_17·2	112.4		0.86 (se 0.09)
555/ 11492 (4·8%/y)	638/ 11830 (5·4%/y)	-19.3	239-4	\Leftrightarrow	> 0.92 (SE 0.06) 2p = 0.21; NS
in 2 catego	ries: $\chi_1^2 = 1$.	1; 2p = 0	-29; NS		
dence intervals			 0	0.5 1	0 1.5 2.0
			т,	movifen better	
	909/ 27870 (3.3%/y) in 2 catego 263/5910 (4-5%/y) 434/11588 (3-7%/y) 697/ 17498 (4-0%/y) in 2 catego 316/5854 (5-4%/y) 239/5638 (4-2%/y) 555/ 11492 (4-8%/y) in 2 catego dence intervals ween tamoo	909/ 847/ 27870 26256 (3.3%/y) (3.2%/y) in 2 categories: $\chi_1^2 = 3.4$ 263/5910 235/5074 (4.5%/y) (4.6%/y) 434/11588 448/11852 (3.7%/y) (3.8%/y) 697/ 683/ 17498 16926 (4.0%/y) (4.0%/y) in 2 categories: $\chi_1^2 = 0.3$ 316/5854 323/5728 (5.4%/y) (5.6%/y) 239/5638 315/6102 (4.2%/y) (5.2%/y) 555/ 638/ 11492 11830 (4.8%/y) (5.4%/y) in 2 categories: $\chi_1^2 = 1.3$ dence intervals ween tamoxifen effects : ace-stratified $\chi^2 = 0.4$	909/ 847/ -8.0 27870 26256 (3.3%/y) (3.2%/y) in 2 categories: $\chi_1^2 = 3.4$; 2p = 0 263/5910 235/5074 -12·2 (4·5%/y) (4·6%/y) 434/11588 448/11852 -11·3 (3·7%/y) (3·8%/y) 697/ 683/ -23.5 17498 16926 (4.0%/y) (4·0%/y) in 2 categories: $\chi_1^2 = 0.3$; 2p = 0 316/5854 323/5728 -2·1 (5·4%/y) (5·6%/y) 239/5638 315/6102 -17·2 (4·2%/y) (5·2%/y) 555/ 638/ -19·3 11492 11830 (4·8%/y) (5·4%/y) in 2 categories: $\chi_1^2 = 1.1$; 2p = 0 dence intervals ween tamoxifen effects in 2 age-stratified $\chi^2 = 0.4$; 2p = 0	999/ 847/ -8.0 365.0 27870 26256 (3.3%/y) (3.2%/y) in 2 categories: $\chi_1^2 = 3.4$; 2p = 0.07 263/5910 235/5074 -12.2 96.3 (4.5%/y) (4.6%/y) 434/11588 448/11852 -11.3 186.5 (3.7%/y) (3.8%/y) 697/ 683/ -23.5 282.7 17498 16926 (4.0%/y) (4.0%/y) in 2 categories: $\chi_1^2 = 0.3$; 2p = 0.60; NS 316/5854 323/5728 -2.1 127.0 (5.4%/y) (5.6%/y) 239/5638 315/6102 -17.2 112.4 (4.2%/y) (5.2%/y) 555/ 638/ -19.3 239.4 11492 11830 (4.8%/y) (5.4%/y) in 2 categories: $\chi_1^2 = 1.1$; 2p = 0.29; NS dence intervals 0 ween tamoxifen effects in χ age-stratified $\chi^2 = 0.4$; 2p = 0.54; NS	909/97 847/ -8-0 365-0 27870 26256 (3.3%/y) (3.2%/y) in 2 categories: $\chi_1^2 = 3.4$; 2p = 0.07 263/5910 235/5074 -12·2 96·3 (4.5%/y) (4.6%/y) 434/11588 448/11852 -11·3 186·5 (3.7%/y) (3.8%/y) 697/ 683/ -23.5 262.7 17498 16926 (4.0%/y) (4.0%/y) in 2 categories: $\chi_1^2 = 0.3$; 2p = 0.60; NS 316/5854 323/5728 -2·1 127·0 (5.4%/y) (5.6%/y) 239/5638 315/6102 -17·2 112·4 (4·2%/y) (5.6%/y) 239/5638 315/6102 -17·2 112·4 (4·2%/y) (5.2%/y) 5555/ 638/ -19·3 239.4 11492 11830 (4.8%/y) (5.4%/y) in 2 categories: $\chi_1^2 = 1.1$; 2p = 0.29; NS dence intervals 0 0.5 1. Tamoxifen better ween tamoxifen effects in : ane-stratified $\chi^2 = 0.4$; 2p = 0.54; NS

* In the tamoxifen versus not analyses, 3 of the 32 trials were of single-agent chemotherapy.

Web Fig. 4(i). Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) and age at randomisation: 10-year probabilities of recurrence

Web Fig. 4(ii). Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) and age at randomisation: 10-year probabilities of breast cancer mortality

Web Fig. 4(iii). Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) and age at randomisation: 10-year probabilities of death from any cause

Web Fig. 5. Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) for patients with entry age < 50: 10-year probabilities of (i) recurrence, (ii) breast cancer mortality and (iii) death from any cause

(i) Recurrence

(ii) Breast cancer mortality

(iii) Death from any cause

Web Fig. 6. Polychemotherapy versus not in ER-poor disease, by type of comparison (absence or presence of tamoxifen in both treatment groups) for patients with entry ages 50-69: 10-year probabilities of (i) recurrence, (ii) breast cancer mortality and (iii) death from any cause

(i) Recurrence

(ii) Breast cancer mortality

(iii) Death from any cause

Web Fig. 7(i). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by nodal status: event rate ratios for recurrence

	Events/	Women	Polyche	mo. evente	<u>S</u>	
Category	Allocated Poly	Allocated control	Logrank O–E	variance of O-E	Poly :	al event rates Control
$(a) \Delta a a < 50$						
(a) Age < 50						
N0/N-	240/811 (29∙6%)	300/718 (41∙8%)	-55·2	116 ·0	-	0.62 (SE 0.07)
N+/N?	97/204 (47·5%)	11 0 /174 (63·2%)	_14·8	27.7		0·59 (se 0·15)
(a) subtotal	337/ 1015 (33-2%)	410/ 892 (46·0%)	-70·0	143-6	- 🔶	0.61 (SE 0.07) 2p < 0.00001
Difference between treatment effect	ts in 2 catego	ories: χ ² = 0·	1; 2p = 0	-78; NS		
<u>(b) Age 50 – 59</u>						
N0/N-	12 0 /473 (25·4%)	169/467 (36·2%)	-26·1	62·9		0·66 (se 0·10)
N+/N?	385/747 (51 ·5%)	308/508 (60·6%)	_44·9	118.6	-	0.68 (se 0.08)
(b) subtotal	505/ 1220 (41-4%)	477/ 975 (48·9%)	-71.0	181.5	\rightarrow	0·68 (SE 0·06) 2p < 0·00001
Difference between treatment effect	ts in 2 catego	ories: $\chi_1^2 = 0$.	1; 2p = 0	•82; NS		
<u>(c) Age 60 – 69</u>						
N0/N-	96/311 (30·9%)	106/300 (35·3%)	_12·1	44·7		— 0·76 (se 0·13)
N+/N?	389/686 (56·7%)	291/473 (61 ·5%)	–21·5	120.5	-	- 0·84 (se 0·08)
(c) subtotal	485/ 997 (48-6%)	397/ 773 (51-4%)	-33.6	165-2	$\stackrel{-}{\diamondsuit}$	0·82 (SE 0·07) 2p = 0·009
Difference between treatment effect	ts in 2 catego	pries: $\chi_1^2 = 0$.	3; 2p = 0	-60; NS		
- 99% or <-> 95% co	nfidence intervals			 0	0.5 1.	0 1.5 2.0
		_		. F	olychemo. better	Polychemo. worse
(a+b+c): Difference b 2 nodal status categori	etween polyc ies: age–stral	tified $\chi_1^2 = 0$	py effect 1; 2p = 0	s in •75; NS	-	-

Web Fig. 7(ii). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by nodal status: event rate ratios for breast cancer mortality

	Deaths	Women	Polyche	no. deaths		
Category	Allocated Poly	Allocated control	Lograni O–E	of O-E	Ratio of annual de Poly : Cor	ath rates ntrol
(a) Age < 50						
N0/N-	159/811 (19∙6%)	186/718 (25·9%)	-21·5	77·3		0·76 (se 0·10)
N+/N?	82/204 (40·2%)	101/174 (58·0%)	_12·6	28.6		0·64 (se 0·15)
(a) subtotal	241/ 1015 (23·7%)	287/ 892 (32.2%)	-34.1	105- 9	-	0·72 (SE 0·08) 2p = 0·0009
Difference between treatment effe	cts in 2 catego	ories: χ ² = 0·	6; 2p = 0	-46; NS		
(b) Age 50 – 59						
N0/N-	84/473 (17·8%)	129/467 (27·6%)	_22·0	47.4		0·63 (se 0·12)
N+/N?	336/747 (45 ·0%)	263/508 (51 ·8%)	-22·7	11 0·3		0·81 (se 0·09)
(b) subtotal	420/ 1220 (34-4%)	392/ 975 (40-2%)	-44.7	157.7	\rightarrow	0·75 (se 0·07) 2p = 0·0004
Difference between treatment effe	cts in 2 catego	pries: $\chi_1^2 = 2$.	2; 2p = 0	-14; NS		
<u>(c) Age 60 – 69</u>						
N0/N-	69/311 (22·2%)	87/300 (29·0%)	_1 0 ·7	35·2		0·74 (se 0·15)
N+/N?	350/686 (51 ∙0%)	251/473 (53·1%)	_4·2	112.6		- 0·96 (se 0·09)
(c) subtotal	419/ 997 (42-0%)	338/ 773 (43.7%)	-14.9	147.8		0·90 (SE 0·08) 2p = 0·22; NS
Difference between treatment effe	cts in 2 catego	pries: $\chi_1^2 = 1$.	9; 2p = 0	-17; NS		
- ■ - 99% or <>> 95% o	confidence intervals	i		0	0.5 1.0	
(a+b+c): Difference	between polyc	:hemothera	py effect	Po sin	lychemo. better Po	lychemo. worse

(a+b+c): Difference between polychemotherapy effects in 2 nodal status categories: age–stratified $\chi_1^2 = 1.9$; 2p = 0.17; NS

Web Fig. 7(iii). Polychemotherapy versus not in ER-poor disease, subdivided first by age at randomisation and then by nodal status: event rate ratios for death from any cause

	Deaths/won	nan-years F	Polycher	no. death	S D	
Category	Allocated Poly	Allocated control	Logrank O_E	variance of O–E	e <u>Ratio of annu</u> Poly	al death rates : Control
	· · · ,					
<u>(a) Age < 50</u>						
N0/N-	178/9124 (2∙0%/y)	200/7847 (2·5%/y)	_21 ∙0	84·8		0·78 (se 0·10)
N+/N?	85/1545 (5∙5%/y)	103/1069 (9∙6%/y)	–13·3	29·3		0·63 (SE 0·15)
(a) subtotal	263/ 10669 (2·5%/y)	303/ 8916 (3·4%/y)	-34.4	114-1	- 🔶	0·74 (SE 0·08) 2p = 0·001
Difference between treatment effect	ts in 2 catego	ries: χ ² = 0-9	9; 2p = 0	-33; NS		
<u>(b) Age 50 – 59</u>					1	
N0/N-	11 0/5326 (2·1%/y)	152/4681 (3·2%/y)	_22·5	58·1		0·68 (se 0·11)
N+/N?	373/6351 (5∙9%/y)	278/3814 (7∙3%/y)	–20·3	118.7		0.84 (se 0.08)
(b) subtotal	483/ 11677 (4·1%/y)	430/ 8495 (5·1%/y)	-42.8	176-8	- 🔶	0·79 (SE 0·07) 2p = 0·001
Difference between treatment effect	ts in 2 catego	ries: χ ² = 1.6	B; 2p = 0	-18; NS		
<u>(c) Age 60 – 69</u>					1	
N0/N-	98/3116 (3·1%/y)	120/2868 (4·2%/y)	_14·3	49 · 0		0.75 (se 0.12)
N+/N?	415/5391 (7·7%/y)	286/3425 (8·4%/y)	<u>-</u> 3·3	131.2		— 0·98 (se 0·09)
(c) subtotal	513/ 8507 (6·0%/y)	406/ 6293 (6-5%/y)	-17.6	180.1	- 🔶	> 0·91 (SE 0·07) 2p = 0·19; NS
Difference between treatment effect	ts in 2 catego	ries: χ ² = 2.5	5; 2p = 0	⊷11; NS		
- - 99% or <->> 95% co	nfidence intervals			 0	0.5 1	-0 1.5 2.0
(a+b+c): Difference b 2 nodal status categori	etween polyc es: age–stral	themotherap ified $\chi_1^2 = 1.9$	oy effect 9; 2p = 0	sin ⊡17;NS	^o olychemo. better	Polychemo. worse

19

Web Fig. 8(i). Polychemotherapy versus not in ER-poor disease, by various subgroups: event rate ratios for recurrence

	Events/	Nomen I Allocated	Polycher Logrank	no.eve Varian	oe Ratio of annu	al event rates
(a) Type of polychen	Poly	control $fy^2 = 2.8$	0-E	of O-I S9:NS	E Poly	Control
CMF alone	471/1150	450/970	-57.1	178.6		0.73 (SE 0.06)
FAC/FEC alone	(41 0%) 146/420	(46-4%) 170/348	-32-8	67-6		0.62 (SE 0.10)
CMF plus non-anth.	(34·8%) 126/307	(48-9%)	-15-9	56-8		- 0.75 (SE 0.12)
Other anth.	(41 0%) 376/731	(46·1%) 257/427	-32.7	120.1		0.76 (SE 0.08)
Other non-anth.	(51-4%) 239/703	(60.2%) 303/676	-49.5	121.7		0.67 (SE 0.07)
(h) Entry age (trend	(34·0%) v ² - 3.9· 2i	(44/6%) n – 0.05)				
(D) Entry age (Liena	1 an/aen	1 = 0.00)	- ac	E1.0	_	0.60 (c= 0.11)
40 - 44	(36·1%) 97/294	(51-0%)	-17-9	41.9		0.65 (SE 0.13)
45 - 49	(33·0%) 110/361	(44·1%) 141/330	-25.9	49.9		0.60 (SE 0.11)
50 - 54	(30-5%) 239/596	(42-7%) 223/481	-27.1	85.9		0.73 (SE 0.09)
55 – 59	(40·1%) 266/624	(46.4%) 254/494	-43-8	95.7		0.63 (SE 0.08)
60 - 64	(42·6%) 304/626	(51 4%) 261/497	-26-3	1054		0.78 (SE 0.09)
65 - 69	(48-6%) 181/371	(52-5%) 136/276	-7.3	59.9		
70+	(48.8%) 29/75	(49/3%) 33/76	-5-8	90		0.53 (SE 0.25)
Unknown	2/4	0/2				
(c) Menopausal statu	<u>us</u> (age-st	rat.* $\chi_1^2 =$	0·5; 2p	= 0.49	; NS)	
Pre/peri	397/1138	449/1006	-66-0	174.7		0.69 (SE 0.06)
(78% age < 50y) Post	(34·9%) 952/2148	(44-6%) 850/1684	-111-4	357.7	—	0·73 (se 0·05)
(6% age < 50y)	(44·3%)	(50-5%)			The second se	
(d) Nodal status (age	9/25 →strat.* χ	= 0.1; 2p	-5·1 5 = 0·74	; NS)		
N0/N-	463/1621	566/1521	-100.1	238 0		0.66 (SE 0.05)
(49% age < 50y) N±/N2	(28·6%)	(38-7%)		204.0	–	0.74 (c= 0.05)
(12% age < 50y)	(53·0%)	(60.9%)	-07.4	294.0		0-74 (SE 0-05)
(e) Absence or prese	ence of tar	n (age-st	trat.* χ_1^2	= 0.0;	2p = 0.84; NS)	
Poly alone vs. Nil	611/1661	746/1583	-105.6	260.0		0.67 (SE 0.05)
(53% age < 50y) Poly + Tam vs. Tam	747/1650	571/1135	-74.8	2394		0·73 (SE 0·06)
(6% age < 50y)	(45·3%)	(50 3%)			.	
(1) Tumour size (tren	$d \chi_1^- = 0.1;$	2p = 0.82	2; NS)			
1–20mm (T1)	438/1254 (34-9%)	393/975 (40 3%)	-57.9	167.7	-#	0·71 (SE 0·07)
21–50mm (T2)	597/1456 (41·0%)	620/1245 (49.6%)	-88-9	246-2	-#-	0·70 (se 0·05)
> 50mm (T3+T4)	89/156	80/137	-4.7	22.2		0·81 (SE 0·19)
Other / unknown	234/445	224/361	-31.5	82.2	-d	0.68 (SE 0.09)
(g) Tumour size, N0/	N– only (ti	rend $\chi_1^2 =$	0·1; 2p	= 0.78	i; NS)	
1–20mm (T1)	158/671	212/643	-36-6	84 <i>-</i> 5		0.65 (SE 0.09)
21–50mm (T2)	236/771	314/731	-57.5	121.6		0.62 (SE 0.07)
> 50mm (T3+T4)	22/53	17/47	-D·1	7.0		
Other / unknown	47/126	45/100	-3·6	18-8	Ne.	
(II) Tulliour unlerent		10 k ₁ = 2.	1, zp =	0.14,1	13)	
Well-differentiated	(39·5%)	(40.3%)	1.6	9.6	_	
Roorly	(43·6%)	(51-0%)	-30.9	115.4		0.71 (se 0.08)
Unknown	(41·1%)	(47.4%)	-127.4	320.2		0.67 (SE 0.05)
	(40.4%)	(48.6%)	127 4	OLC L	L)	000 (02000)
(i) Tumour differenti	ation, N0/N	v– only (t	rend χ^2_1	= 0.0;	2p = 0.86; NS)	
Well-differentiated	10/35 (28·6%)	7/31 (22:6%)	D-1	2.9		•••••
Moderately	57/229 (24·9%)	72/201 (35-6%)	-13-3	27.0		0.61 (SE 0.15)
Poorly	135/472 (28-6%)	163/436 (37-4%)	-20.9	61.7		0.71 (SE 0.11)
Unknown	261/885 (29·5%)	346/853 (40.6%)	-64 •4	1403	-0+-	U-63 (SE U-U7)
(j) PR status ($\chi_1^2 = 0.3$	5; 2p = 0·5	0; NS)				
PR-poor	624/1903 (43·3%)	783/1571 (49 [.] 6%)	-105.0	325-1	#	0·72 (SE 0·05)
PR+	271/705	256/516	-39-1	97.7		0.67 (SE 0.08)
PR unknown	263/703	278/631	-36-9	109.6	- <u></u>	0·71 (SE 0·08)
(k) Years from entry	(trend χ ² =	= 15·7; 2p	= 0.00	008; de	enominator: survi	vors)
0 – 1	570/3311	704/2718	-137.7	2514		0.58 (SE 0.05)
2 - 4	(17·2%) 458/2658	(25-9%) 372/1932	-33-4	1724		0.82 (SE 0.07)
5-9	(17.2%)	(19:3%)	14.1	07.6		0.84 (c= 0.10)
10+	(11·3%) 105/1256	(11-6%) 76/850	- 14-1	0210 38/3		0.93 (SE 0.16)
	(8·4%)	(8-9%)	- NE			(0-0-10)
() Type of recurrence	e (χ ₂ = 2·9	; p = 0.24	; NS)	<i></i>		0.01/
Isolated local	204/2254 (9·1%)	242/1959 (12:4%)	-43-4	97.2		0.64 (SE 0.08)
Isol. contralateral	123/3045 (4·0%)	104/2446 (4·3%)	-8-3	52.6		0.85 (SE 0.13)
uistant/mixed/unk.	1031/3311 (31·1%)	971/2718 (35·7%)	-136-3	394-9		U-71 (SE 0-04)
Total	1358/	1317/	120 0	544 0		0.709 /
	3311 (41-0%)	2718 (48-5%)	-100.0	~ ~~	\$	2p < 0.00001
-∎- 99% or -<±>- 95% confi	dence intervals					
				c	Polychemo hetto-	u 1.5 2.0
* Ch+01	E0 E0 -	80 8C ·			Treatment effect	ct 2p < 0.00001
Stratmed for age < 50	, 30–39 and	on pa ou h				• • • • • • • •

Web Fig. 8(ii). Polychemotherapy versus not in ER-poor disease, by various subgroups: event rate ratios for breast cancer mortality

Catagony	Deaths/ Allocated	Women F Allocated	Polycher Lograni	no. deaths Variance	Ratio of annua	death rates
(a) Type of polycher	Poly	control $(\sqrt{2} - 1.3)$	0-E	610-E	Poly	Control
	200/1150	272/070	20.5	156.0		0.79 (cc 0.07)
	(34-4%)	(38.5%)	-30-5	1502		0.73 (az 0.07)
CME plup pop onth	(26.4%)	(35.6%)	-17-4	51.7		0.71 (SE 0.12)
Other anth	(31.9%)	(36.7%)	-10.7	47.1	_	0.80 (SE 0.13)
Other pop, onth	(44.3%)	(51.3%)	-17.9	108-3		- 0.85 (SE 0.09)
	(25.3%)	(32.8%)	-20.1	92.1		0.75 (SE 0.03)
(b) Entry age (trend	$\chi_1^2 = 1.4; 2$	p=0·23;I	NS)			
< 40 years	91/360 (25-3%)	101/306 (33-0%)	-8.6	35.9	-+	— 0·79 (se 0·15)
40 – 44	74/294 (25-2%)	77/256 (30.1%)	-6-0	32.5		
45 – 49	76/361 (21·1%)	109/330 (33·0%)	-19·5	37.5		0.59 (SE 0.13)
50 – 54	189/596 (31·7%)	180/481 (37-4%)	-19-3	71.9		0.76 (SE 0.10)
55 – 59	231/624 (37·0%)	212/494 (42·9%)	-25-4	85.8		0.74 (se 0.09)
60 – 64	262/626 (41·9%)	220/497 (44·3%)	-17·0	93-3		0.83 (SE 0.09)
65 - 69	157/371 (42·3%)	118/276 (42-8%)	2.1	54.5		1-04 (SE 0-14)
70+	26/75 (34·7%)	30/76 (39.5%)	-5.2	8.9		— 0·56 (SE 0·25)
Unknown	1/4	0/2				
(c) Menopausal stat	us (age-si	trat.* $\chi_1^2 =$	0.9; 2p	= 0·35; N	S)	
Pre/peri	284/1138 (25:0%)	315/1006	-33-9	128.6		0.77 (se 0.08)
Post	814/2148	718/1684	-71.1	316-3	- 	0.80 (SE 0.05)
(5% age < 50y) Unknown	9/25	14/28	-2.7	4.1	TI	
(d) Nodal status (age	e-strat.* χ	² = 1.9; 2p) = 0·17	'; NS)		
ND/N-	316/1621	413/1521	-62.9	169.6	- B	0.69 (se 0.06)
(49%) age < 50y) N+/N?	(19·5%) 791/1690	(27·2%) 634/1197	-44-6	275-2		0.85 (se 0.06)
(12% age < 50y)	(46-8%)	(53.0%)	_			. ,
(e) Absence or prese	ence of tai	<u>m</u> (age–st	rat.* χ ₁	= 0∙0; 2p	= 0.94; NS)	
Poly alone vs. Nil (53% age < 50v)	465/1661 (28·0%)	563/1583 (35·6%)	-54-9	205.5		0.77 (SE 0.06)
Poly + Tam vs. Tam	642/1650	484/1135	-44.0	214.8		0.81 (se 0.06)
(b% age < 50y) (f) Tumour size (tren	(30-376)	- 2n - 0.98	NS)			
1 20mm (T1)	247(1254	200/075		101.0	<u> </u>	0.80 (cc. 0.08)
1=20mm (T1)	(27.7%)	(29.7%)	-20.0	131.3		0.00 (SE 0.00)
21-50mm (12)	483/1456 (33·2%)	(40.3%)	-53-3	208-0		0.77 (SE 0.08)
> 59mm (T3+T4)	77/156 (49·4%)	69/137 (50-4%)	-2.9	22.7		0-88 (SE 0-20)
Other / Unknown	200/445 (44·9%)	186/361 (51-5%)	-17-9	72.4	-0	0.78 (SE 0.10)
(g) Tumour size, N0/	N– only (t	rend $\chi_1^2 =$	0·0; 2p	= 0·93; N	IS)	
1–20mm (T1)	107/671	138/643	-19-3	56.8		0.71 (SE 0.11)
21–50mm (T2)	166/771	236/731	-41.0	92.7		0.64 (se 0.08)
> 50mm (T3+T4)	17/53 (32·1%)	13/47	0.8	5.9		•>
Other / unknown	26/126	26/100	-2·5	10-7		
(n) rumour anierent	lation (tre	nu χ ₁ = 20	o; ∠p =	U-TU; NS)	'	
	28/81 (34·6%)	24/72 (33·3%)	3.5	9.2		• • • • •
Moderately	172/493 (34·9%)	170/404 (42·1%)	-8-8	65-1		- 0.87 (SE 0.12)
Pooriy	(34.7%)	(39.5%)	-26.5	103-3		0.77 (SE 0.09)
Unknown	(32.5%)	(37.4%)	-72.9	260.0	나비	0.76 (SE 0.05)
(i) Tumour differenti	ation, NO/I	N– only (t	rend χ^2_1	² = 0·1; 2p	o = 0·80; NS)	
Well-differentiated	7/35	4/31	0.8	2.2		>
Moderately	(20.0%) 36/229	(12.9%) 49/201	-8-9	18.9		0.62 (se 0.18)
Poorly	(15·7%) 98/472	(24.4%) 127/436	-16-9	48.0		0.70 (se 0.12)
Unknown	175/885	233/853	-38-3	96.6	-0+	0.67 (SE 0.08)
(j) PR status ($\chi^2 = 0.3$	(19 ⁻ 0-%) 7;2p = 0-3	9;NS)				
PR-poor	678/1903	615/1571	-54.7	268.7	<u>i</u>	0.82 (se 0.06)
DD	(35.6%)	(39.1%)				
PH+	209/705 (29·6%)	196/516 (38.0%)	-24.6	78-8		0.73 (SE 0.10)
Ph unknown	(31.3%)	(37.4%)	-24-9	82.8	-4-1	0.77 (SE 0.09)
(k) Years from entry	(trend χ_1^2	= 0·2; 2p =	= D·63;	NS; deno	minator: survivo	ors)
0 – 1	264/3311 (8·0%)	271/2718 (10·0%)	-28.7	112.6		0.77 (se 0.08)
2 – 4	463/2958 (15-7%)	450/2355 (19-1%)	-45-2	192-1		0.79 (SE 0.06)
5 – 9	262/2258	229/1733	-31.3	105-7	_ _	0.74 (se 0.08)
10+	(118/1450 /8-19/1	97/1066	-4.0	45-1		0.91 (se 0.14)
Total	1107/	1047/	100.1			0 787 (~~ 0 040)
Iotai	3311 (33-4%)	2718	-109-1	400.0		2p < 0.00001
- E -99% or <_> 95% confi	dence intervals	, • ·•,				
				۰_	0.5 1.0	1.5 2.0
				P	Treatment effect	- orycnemo, worse
 Stratified for age < 50 	, 50-59 and	60-69 only	,			

Web Fig. 8(iii). Polychemotherapy versus not in ER-poor disease, by various subgroups: event rate ratios for death from any cause

	Deaths/won Allocated	nan-years Allocated	olyche Lograni	mo. deat Variano	hs Ratio of annual death rates
Category	Poly	control	0-E	of O-E	Poly : Control
(a) Type of polycnel	nomerapy	$\chi_4 = 2.0;$	p = 0∙.	(4;NIS)	
CMF alone	442/9060 (4·9%/γ)	408/7115 (5·7%/γ)	-39.7	173-2	U-80 (SE U-07)
FAC/FEC alone	122/3392 (3∙6%/y)	133/2697 (4·9%/y)	-16.9	56-1	0.74 (se 0.12)
CMF plus non-anth	119/3796 (3.1%/v)	129/3430 (3-8%/y)	-11.4	56.7	0·82 (se 0·12)
Other anth.	400/7131 (5-6%/v)	251/3683 (6-8%/y)	-15.9	129.9	0.66 (SE 0.06)
Other non-anth.	216/8174 (2.6%/v)	260/7418 (3-5%/y)	-30.5	110.4	0.76 (se 0.08)
(b) Entry age (trend	$\chi_1^2 = 1.6; 2$	p = 0·21; l	NS)		
< 40 years	94/3774	102/3176	-8·5	36.4	0.79 (se 0.15)
40 – 44	(2 5%/y) 79/2987	(3·2%/y) 80/2684	-5.0	34-4	0.86 (se 0.16)
45 – 49	(2·6%/y) 90/3908	(3·0%/y) 121/3056	-20·9	43-3	0.62 (se 0.12)
50 – 54	(2·3%/y) 217/6036	(4·0%/γ) 196/4472	-16.7	80.6	0.61 (se 0.10)
55 – 59	(3·6%/y) 266/5641	(4-4%/y) 234/4023	-26·1	96-2	0.76 (se 0.09)
50 – 64	(4·7%/y) 310/5563	(5-8%/y) 252/4057	-16·9	110-3	0.86 (se 0.09)
55 - 69	(5·6%/y) 203/2944	(6·2%/γ) 154/2236	-0.7	69·7	0.99 (se 0.12)
70+	(6·9%/y) 39/531	(6·9%/γ) 42/487	-4·2	13.4	0.73 (se 0.23)
Jnknown	(7·3%/y) 1/31	(8·6%/γ) 0/21			
c) Menoneusel stat		trat $\star \sqrt{2}$ –	0.8.20	- 0.36	NS)
c) wenopausarstat	us (age-s	ιαι. χ ₁ =	u∙o, zp	= 0.30	, NG)
-re/pen _(78% age < 50y)	313/12169 (2·6%/y)	332/9955 (3·3%/γ)	-33-3	138-1	0.79 (se 0.08)
ost (6% age < 50v)	976/19176 (5·1%/y)	831/14145 (5·9%/y)	-76.3	375-9	0.82 (se 0.05)
Jnknown	10/191	18/224	-3·5	5.0	
d) Nodal status (ag	e-strat.* χ	² = 1.9; 2p	o = 0·17	';NS)	
ND/N-	393/17862	489/15732	-68.3	204.6	0.72 (se 0.06)
(49%) age < 50y) N+/N?	(2·2%/¥) 906/13657	(3·1%/γ) 692/8574	-41·2	308-1	0.87 (se 0.05)
(12% age < 50y)	(6·6%/γ)	(8·1%/ y)			
e) Absence or pres	ence of ta	<u>m</u> (age-st	rat.* χ ²	= 0.0;	2p = 0.90; NS)
Poly alone vs. Nil	543/17953	640/15774	-58.2	236-9	0.78 (se 0.06)
(53% age < 5∪y) Poly + Tam vs. Tam	(5 6 /0/y) 756/13462	541/8438	-40·9	247-3	0.85 (se 0.06)
(6% age < 50y)	(5·6%/γ)	(6·4%/γ)			
f) Tumour size (trer	nd $\chi_1^2 = 0.0$; 2p = 0·94	1; NS)		
1–20mm (T1)	416/12886 (3:2%/v)	336/9577 (3:5%/y)	-30.5	155-6	0·82 (se 0·07)
21–50mm (T2)	576/13464	566/10866	-54·5	242.8	0.80 (se 0.06)
⊳ 50mm (T3+T4)	(4-3.0/y) 83/1312	(3·2 /0/) 72/1013	-2.4	24.4	
Other / unknown	(6·3%/γ) 224/3822	(7·1%/γ) 207/2826	-19·8	80.9	0.78 (se 0.10)
a) Tumour size, NO	(5·9%/y) /N only (1	(7·3%/y)	0 2 . 20	- 0.67	- NG)
(g) Turriour size, Nu			0.2, Zh		, 143)
1-20mm (11)	(1·7%/y)	(2·4%/γ)	-24.6	69.3	
21-50mm (12)	208/8268 (2·5%/γ)	(3·7%/y)	-43.3	112.4	U-00 (SE U-00)
> 50mm (13+14)	20/608 (3·3%/y)	16/497 (3·2%/γ)	0.7	7.2	
Other / unknown h) Tumour differen:	34/1246 tiation (tre	29/980 nd v ² – 1.1	–1·6 2·2n –	12-6 0.28- N	191
Nell differentieted		10 x ₁ = 1.	c, zp =		
Mederately	(4·1%/γ)	29/687 (4·2%/γ)	2.9	71.0	0.85 (at 0.11)
	(4·4%/γ)	(5·7%/y)	-11-0	11.0	
-oony	(5·0%/y)	(5·8%/y)	-21.2	111-0	
Jnknown	/82/20499 (3·8%/γ)	699/15/06 (4·5%/γ)	-80.6	313-2	0.77 (SE 0.05)
i) Tumour different	iation, NO/	N– only (t	rend χ ²	² = 0·2;	2p = 0.67; NS)
Vell-differentiated	7/423	6/365	0.4	2.4	·
Moderately	(1·7%/y) 41/2292	(1-6%/y) 60/1950	-12.3	22.5	0.58 (se 0.16)
Poorly	(1·8%/y) 111/4040	(3·1%/γ) 135/3347	-15·0	52.9	0.75 (se 0.12)
Jnknown	(2·7%/y) 234/11091	(4·0%/y) 288/10052	-43·9	123-1	0.70 (se 0.08)
	(2·1%/γ)	(2·9%/γ)			
$\frac{) \text{ PR status}}{ } (\chi_1^- = 0)$	6;2p = 0.4	14; NS)			
PR-poor	792/18774 (4·2%/v)	694/14599 (4·8%/γ)	-55.5	310.6	0.84 (se 0.05)
'R+	255/7039	222/4833	-25.0	92.8	0.76 (se 0.09)
R unknown	(3·6%/y) 252/5705	(4-6%/y) 265/4868	-28.9	108.5	0.77 (se 0.08)
k) Years from entry	(4·4%/γ) (trend γ ²	(5·4%/γ) - 0.5:2n-	- 0.49-	NS	
			- 	100.0	0.90 (~~ 0.09)
	∠87/6310 (4·5%/γ)	∠85/5128 (5-6%/γ)	-21.1	120.9	
2 – 4	492/7704 (6·4%/y)	467/5978 (7·8%/γ)	-45·4	202.2	0.60 (se 0.06)
5 – 9	310/9103 (3.4%/w)	263/6718	-34-9	123-6	0.75 (se 0.08)
10+	(3·+%/y) 210/8278	(3-5%/y) 166/6380	-6.2	79·6	0.93 (se 0.11)
— –	(2·5%/ y)	(2·6%/ y)			
Total	1299/ 31553	24343	-114-1	526-3	0-805 (SE 0-039) 2p < 0-00001
	(4·1%/ y)	(4·9%/y)			
- ■ aa.∞or <t> ao.∞cou</t>	naence intervala			a	0.5 1.0 1.5 2.0
					Polychemo better Polychemo worse

* Stratified for age < 50, 50–59 and 60–69 only

Polychemo. better | Polychemo. worse Treatment effect 2p < 0.00001 Web Fig. 9(i). Polychemotherapy versus not in ER-poor disease: trial details and recurrence rate ratios in each of 46 separate trials

Y	ear code	Months &	Events/ Allocated	Women Allocated	Polycher Lograni	no. events Variance	s Ratio of annu	al event rates
and	study name	treatment	Poly	control	Ő-Е	of O-E	Poly :	Control
<u>(a)</u> (CMF alone							
75E₂ 76C 7781+2 785 799H 80J1 80J1 80J1 8042 87Da 884D 87Da 8842 87Da 8842 87Da 89A2 89449 89A49 89A49 89A49 89A9 89A1 90P 90S1 90S1	Manchester I Graggew IBCSG-Ludwq III BCSG-Ludwq III BCSG-Ludwq III Guys March. II Paris INT Mian 8004 Viennah GKC 820 RGC A 282 RGC A 4 IBCSG VI GABG 3 Germany SABP B-20 IBCSG VI BCRC VI Haly CRCRAMS Moscow GROCTA V Italy CRCRAMS Moscow BCROCTA VI Amsterdam C8913 BCSC OLI Hamburg, Germany	$\begin{array}{c} 12 \ \text{CMF} \\ 13 \ \text{CMF} \\ 14 \ \text{CMF} \ \text{CMF} \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 1$	9/12 27/40 9/19 26/40 14/48 20/49 20/49 20/49 20/49 26/40 26/40 32/20 32	13/20 19/28 13/14 26/31 36/44 18/36 30/47 6/11 64/83 17/28 44/72 4/17 0/2 60/196 12/22 20/38 2/4 16/50 11/50 11/50 13/31 13/95 13/51	$\begin{array}{c} 0.9\\ -1.4\\ -2.0\\ -7.1\\ -7.8\\ -9.2\\ 0.2\\ -2.2\\ -2.2\\ -2.2\\ -2.2\\ -2.1\\ -0.3\\ -0.3\\ -2.4\\ -2.9\\ -2.4\\ -2.9\\ -2.4\\ -2.9\\ -3.0\\ -3.2\end{array}$	$\begin{array}{c} 4 \cdot 0 \\ 8 \cdot 9 \\ 3 \cdot 4 \\ 6 \cdot 7 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 2 \cdot 7 \\ 1 \cdot 9 \\ 2 \cdot 4 \\ 3 \cdot 2 \\ - 6 \cdot 8 \\ 4 \cdot 7 \\ 5 \cdot 4 \\ 4 \cdot 0 \\ \end{array}$		
	(a) subtotal		471/ 1150 (41-0%)	450/ 970 (46·4%)	-57.1	178-6	A	0-73 (SE 0-06) reduction 2p = 0-00002
<u>(b)</u> I	FAC/FEC alone							
80S1 86P2+3 89@ 89B1 89D 90C6 96E	Helsinki FASG France Bari Italy SWOG 8814 IGR Paris FASG GFEA 07 Austrian BCSG IX	8 FAC + 6 FEC 6 FEC + 6 FAC + 6 FAC/FEC + 6 FEC + 4 FEC	8/22 79/199 12/54 20/55 27/79 0/1 0/10	15/18 92/190 9/40 12/18 42/76 0/0 0/6	-5·1 -12·9 0·1 -4·9 -10·1	4.2 38.5 4.9 5.1 14.9		>
	(b) subtotal		146/ 420 (34-8%)	170/ 348 (48-9%)	-32-8	67-6	A	0.62 (SE 0.10) reduction 2p = 0.00007
(c) (Other CMF regin	nens without	anthracy	clines				
77G1 78V2 79B1 79C 81H 85J1+3	Vienna ECOG EST6177 SWOG 7827 A Case Western B EST1180/SW.8294 PetrovStPetersb'g	36 CMEV 12 CMEPr 12 CMEVPr 12 CMEVPr 6 CMEPr † 4 CME; 2TtME	18/20 23/31 9/17 5/12 64/211 7/16	17/19 31/35 8/15 3/8 72/204 6/16	0.0 -6.5 -1.6 -1.0 -7.5 0.7	6.6 10.1 3.7 1.3 32.1 3.0		`
•	(c) subtotal		126/ 307 (41-0%)	137/ 297 (46-1%)	-15-9	56-8		0.76 (SE 0.12) reduction
(d) (Other anthracyc	line regimens	3	,				2p = 0.00
76H	West Midlands LIK	6 CMEVAEol	49/61	63/73	-5.9	20.7		
80C2 80Z 82F 83B 84C 84Q4+5 92D 93H 93M1+2 94F	SE Sweden BCG B Southampton UK MD Anderson 8227 GROCTA I Italy NSABP B-16 Austrian BCSG 4 Amsterdam C9203 IBCSG 11-93 IBCSG 12-93 JCCG 9401	6 AC + 6 VAP/VAC + FACVPr + 6 CMF: 4 E + 6 CMF: 4 E + 24 MelF±A3AC + 6 CMFVA + 4 EC + 4 AC + 4 AC + 6 AC	2/2 20/34 16/53 1/1 275/539 4/10 5/14 0/5 0/4 4/8	2/4 22/36 5/23 2/2 152/252 3/5 5/19 0/1 0/3 3/9	0.7 -1.1 1.3 -0.5 -26.7 -1.5 0.0	0.6 9.0 3.9 0.3 - 81.2 0.6 - 2.3		
	(d) subtotal		376/ 731	257/ 427	-32.7	120-1		0.76 (SE 0.08)
			(51.4%)	(60-2%)				2p = 0.003
<u>(e)</u> (Other polychem	otherapy						
76H2 76K 78M3 81E 88C 92B2 92G1245	West Midlands UK HD 1 W. Germany NCCTG-773051 NSABP B-13 NSABP B-20 HE1092 Greece NCRI ABC	6 ChIMF 24 ChIF 10 CFPr 11 MFFol †?? MFFol †6 CM2F various	28/78 0/1 21/26 111/373 0/0 5/13 74/212	25/60 0/0 28/31 168/380 0/2 0/5 82/198	-2.6 -4.2 -34.9 1.8 -9.5	12·1 9·7 65·5 1·0 33·3		
	(e) subtotal		239/ 703 (34-0%)	303/ 676 (44-8%)	-49-5	121.7	-	0-67 (SE 0-07) reduction 2p < 0.00001
	Total (ae)		1358/ 3311 (41.0%)	1317/ 2718 (48·5%)	-188-0	544-8	 ♦	0-708 (SE 0-036) reduction 2p < 0-00001
-	99% or 🖘 95%	6 confidence inter	vals				0.5 1	0 1.5 2.0
He	Hotors acrost	ween 5 subto	tals: χ_4^2 =	= 2·8;p>	0-1; N	5 ^J NG	Polychemo. better	Polychemo. worse
	Heterogeneity	within subto between 46 tr	ials: χ_{41}^2	= +1·1; p = 50·5: r	> 0.1;	NS	Treatment effe	2t 2p < 0.00001
	genery		~45					

+ Chemotherapy plus tamoxifen versus same tamoxifen alone

Web Fig. 9(ii). Polychemotherapy versus not in ER-poor disease: trial details and breast cancer mortality rate ratios in each of 46 separate trials

			Deaths/	Women	- Polycher	no. deaths	<u> </u>
Y and	ear code study name	Months & treatment	Allocated Poly	Allocated control	Logrank O-E	Variance of O–E	Ratio of annual death rates Poly : Control
(a) (CMF alone						
75E2 76CC 77B1+2 79H 80F1 80F1 84D2 86H2 87D3 88CD 88A2 87D3 89A2 89E4+9 89A2 89E4+9 89A2 89E4+9 89A2 89E4+9 89A2 89E4+9 89V 90S1 90S1 93S	Manchester I Glasgow Danish BCG 77b IBCSG/Ludwig III GUYS Manch, II WIT Milan 8004 Vienna Gyn. Danish BCG 82c Vienna Gyn. CaBC 32 Germany IBCSG IX STAKC-10 VIENCA 10 GRCRAMS Moscow STAKC-10 IBCSG VIII Tokyo CIH Hamburg, Germany (a) subtotal	$\begin{array}{c} 12 \ \text{CMF} \\ 14 \ \text{CMF} \ \text{CMF} \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 1$	9/12 26/40 9/17 8/19 24/40 6/48 14/49 7/11 57/55 7/55 11/225 4/41 11/225 6/41 11/225 6/203 9/5 9/5 9/5 9/5 9/5 6/80 8/92 4/39 396/ 1150	11/20 19/28 11/14 25/31 35/44 10/36 24/47 6/83 39/72 0/2 48/196 48/22 18/38 1/4 13/50 7/50 7/50 7/51 6/95 10/510 10/51 1	2:43 -1:49 -7:55 -3:46 -7:25 -1:1 -0:8 -3:46 -2:26 -2:30 -2:4 -2:4 -2:4 -3:65 -2:4 -2:4 -3:65 -2:4 -2:4 -2:4 -2:4 -2:4 -2:4 -2:4 -2:4	37 92 367 11-8 847 23-27 26-1 1-9 379 7-2 26-1 1-9 379 7-2 26-1 1-9 379 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2	0.79 (SE 0.07)
			(34-4%)	(38-5%)			2p = 0.003
<u>(</u> b)	FAC/FEC alone						
80S1 86P2+3 89@ 89B1 89D 90C6 96E	Helsinki FASG France Bari Italy SWOG 8814 IGR Paris FASG GFEA 07 Austrian BCSG IX	8 FAC + 6 FEC 6 FEC + 6 FAC + 6 FAC/FEC + 6 FEC + 4 FEC	8/22 59/199 4/54 18/55 22/79 0/1 0/10	13/18 63/190 6/40 9/18 33/76 0/0 0/6	-3:4 -4:8 -1:2 -2:3 -5:7	3.8 28.5 2.4 4.8 12.3	
	(b) subtotal		111/ 420 (26·4%)	124/ 348 (35-6%)	-17.4	51.7	0.71 (SE 0.12) reduction 2p = 0.02
(c) (Other CMF regin	nens without	anthracy	clines			
77G1 78V2 79B1 79C 81H	Vienna ECOG EST6177 SWOG 7827 A Case Western B EST1180/SW.8294 PetrovSIPetersbin	36 CMFV 12 CMFPr †12 CMFVPr †12 CMFVPr 6 CMFPr 4 4 CMF: 211MF	12/20 22/31 9/17 5/12 45/211	13/19 29/35 8/15 3/8 52/204 4/16	-1·4 -2·5 -1·2 -0·9 -5·2	5:3 11:3 3:7 1:3 - 23:6 2:0	
	(c) subtotal	1 . 0.01 , 21.00	98/ 307 (31.9%)	109/ 297 (36.7%)	-10.7	47.1	0.80 (SE 0.13) reduction
(d) (Other anthracyc	line regimens	3	(00-1 /0)			2p > 0.1; NS
76H	Wast Midlands LIK	6 CMEVAEol	47/61	61/72	2.2	22.4	
80C2 80Z 80Z 82F 83B 84C 84Q4+5 92D 93H 93M1+2 94F	SE Sweden BCG B Southampton UK MD Anderson8227 GROCTA I Italy NSABP B–16 Austrian BCSG 4 Amsterdam C9203 IBCSG 11–93 IDCSG 12–93 JCCG 9401	6 AC + 6 VAP/VAC 4 FACVPr + 6 CMF; 4 E + 24 MelF±A/3A(+ 6 CMFVA + 4 EC + 4 AC + 4 AC + 4 AC + 6 AC	2/2 13/34 13/53 1/1 237/539 3/10 4/14 0/5 0/4 4/8	0/7/3 2/4 17/36 3/23 1/2 127/252 3/5 4/19 0/1 0/3 1/9	-3-2 0-9 -0-8 -0-5 -16-4 -1-1 -0-1	22-4 0-8 6-6 3-1 0-3 — 71-6 0-6 — 1-9	
	(d) subtotal		324/ 731	219/ 427	-17.9	108-3	0.85 (SE 0.09)
			(44-3%)	(51-3%)			2p = 0.09
<u>(e)</u> (Other polychem	otherapy					
76H₂ 76K 78M₃ 81E 88C 92B₂ 92G1₂45	West Midlands UK HD 1 W. Germany NCCTG-773051 NSABP B-13 NSABP B-20 HE1092 Greece NCRI ABC	6 ChIMF 24 ChIF 10 CFPr 11 MFFol 4?? MFFol 6 CMzF Various	21/78 0/1 21/26 77/373 0/0 4/13 55/212	21/60 0/0 24/31 108/380 0/2 0/5 69/198	-3·4 0·5 -15·7 1·3 -9·4	9·9 9·2 44·6 0·8 27·6	
	(e) subtotal		178/ 703 (25-3%)	222/ 676 (32-8%)	-26.7	92-1	0.75 (SE 0.09) reduction 2p = 0.005
	Total (ae)		1107/ 3311 (33-4%)	1047/ 2718 (38-5%)	-109-1	455-5	 0.787 (se 0.042) reduction 2p < 0.00001
	99% or	6 confidence inter	vals tolor ²	1 2	0.1. 14		0.5 1.0 1.5 2.0
пe	Heterogeneity Heterogeneity	within subto	tals: $\chi_4 =$	= 45.1:n	0-1; NR > 0-1-	NS F	Polychemo. better Polychemo. worse
	Heterogeneity	between 46 tr	tals: v^2	= 46.4: n	> 0.1	NS	Treatment effect 2p < 0.00001
† Cr	nemotherapy plus tam	noxifen versus sar	ne tamoxife	en alone	,		

Web Fig. 9(iii). Polychemotherapy versus not in ER-poor disease: trial details and all-cause mortality rate ratios in each of 46 separate trials

Y and	ear code study name	<u>E</u> Months & treatment	eaths/wom Allocated Poly	an-years Allocated control	Polychei Lograni O-E	mo. death: Variance of O-E	s Ratio of a	innual Poly : (l death rates Control
(a) (CMF alone								
75E2 77B1+2 78K3 79H 80F1 80F1 82C 84D2 86H2 87D3 884D2 884D2 8924 8924 8924 8924 8924 8924 8924 892	Manchester I Glasgow Danish BCG 77b IBCSGLuchwg III Guy's Manch. II Parls Guy's Manch. II Parls Chiller Mark Janes Construction Chiller Mark BCSG VII GABC 3 Germany NSABP B-20 GABC 3 Germany NSABP B-20 GRCRAMS Moscow Romagnolo Italy Amsterdam C8913 IBCSG VIII Jokyo CIH Hamburg, Germany	$\begin{array}{c} 12 \ \text{CMF} \\ 14 \ \text{CMF} \ \text{CMF} \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 14 \ 1$	10/98 29/312 11/196 6/363 16/837 7/104 6/4/401 25/241 134/1679 4/82 0/13 40/1900 10/164 14/243 0/567 10/567 6/301 6/348 9/420 4/129	12/216 21/178 11/147 25/233 37/244 11/234 8/133 65/550 0/28 59/1702 9/153 13/521 7/192 5/312 13/521 7/192 8/344 6/454 11/173 408/	2:2 -1:4 -4:5 -399 -900 0:2 5:5 1:1 1:9 0:2 -1:2 -1:2 -1:8 -1:8 -2:7 -1:1 1:7 -2:7	39 103 34 74 127 39 95 329 76 239 76 239 16 239 44 755 30 44 35 30 43 33 34 35 30			
-	(a) Subiotai		9060 (4-9%/y)	7115 (5·7%/y)	-39.1	173-2			reduction 2p = 0.003
(b) l	FAC/FEC alone								_ p _ 0 000
80S1 86Pa+3 89@ 89B1 89D 90C6 96E	Helsinki FASG France Bari Italy SWOG 8814 IGR Paris FASG GFEA 07 Austrian BCSG IX	8 FAC + 6 FEC + 6 FAC + 6 FAC + 6 FAC/FEC + 6 FEC + 4 FEC	9/169 64/1646 6/508 21/488 22/562 0/6 0/13	16/111 67/1512 8/438 9/146 33/477 0/0 0/13	-3·7 -4·6 -1·2 -1·7 -5·7	4-5 30-7 3-3 5-3 12-3			
	(b) subtotal		122/ 3392	133/ 2697	-16-9	56-1			0.74 (SE 0.12) reduction
(0) (Other OME regin	aan a with a ut	(3·6%/y)	(4·9%/y)					2p = 0-02
(C) (Jiner CMF regin	iens without	anthracy	clines					
77G1 78V2 79B1 79C 81H 85J1+3	Vienna ECOG EST6177 SWOG 7827 A Case Western B EST1180/SW.8294 PetrovStPetersb'g	36 CMEV 12 CMEPr 12 CMEVPr 12 CMEVPr 6 CMEPr † 4 CME; 2TtMI	12/191 23/291 11/169 6/73 61/2892 F 6/180	14/145 29/289 11/131 3/57 68/2621 4/187	-1·4 -2·1 -0·6 -6·1 0·8	5·3 11·5 4·8 1·5 31·3 2·3	*		`````````````````````````````````
	(c) subtotal		119/ 3796 (3·1%/y)	129/ 3430 (3·8%/y)	-11.4	56-7			0-82 (SE 0-12) reduction 2p > 0-1; NS
(d) (Other anthracyc	line regimen:	s						
76H1 80C2 80Z 82F 83B 84C 84Q4+5 92D 93H 93M149 93M149	West Midlands UK SE Sweden BCG B Southampton UK MD Anderson8227 GROCTA I Italy NSABP B-16 Austrian BCSG 4 Amsterdam C9203 IBCSG 12-93 IBCSG 12-93 ICCG 9401	6 CMFVAFol 6 AC † 6 VAP/VAC † 6 CMF;4 E †24 MelF±A/3AI † 6 CMFVA † 4 EC † 4 AC † 4 AC † 6 AC	48/481 2/4 17/400 14/375 1/17 C304/5643 6/52 4/52 0/38 0/34 4/35	61/515 4/37 19/375 3/152 1/17 154/2446 3/22 4/54 0/6 1/15 1/44	-2.9 0.9 0.3 2.0 -0.5 -16.4 -0.5 -0.1	22-6 0-8 8-1 3-4 0-3 - 90-6 1-0 1-9 0-3 -			
	(d) subtotal	1 0710	400/ 7131 (5-6%/y)	251/ 3683 (6-8%/y)	-15-9	129-9	-		0-88 (SE 0-08) reduction 2p > 0-1; NS
<u>(e) (</u>	Other polychem	otherapy							
76H2 76K 78M3 81E 88C 92B2 92B2	West Midlands UK HD 1 W. Germany NCCTG_773051 NSABP B-13 NSABP B-20 HE1092 Greece NCRI ABC	6 ChIMF 24 ChIF 10 CFPr 11 MFFol †?? MFFol †6 CM2F †various	23/1505 0/14 22/229 108/5261 0/0 5/54 58/1111	23/1060 0/0 26/273 140/5018 0/28 0/36 71/1003	-3·8 0·4 -19·3 1·8 -9·3	10-9 9-7 60-0 1-1 28-8			>
	(e) subtotal		216/ 8174 (2·6%/y)	260/ 7418 (3·5%/y)	-30-2	110-4	V	-	0-76 (SE 0-08) reduction 2p = 0-004
	Total (ae)		1299/ 31553 (4·1%/y)	1181/ 24343 (4·9%/y)	-114.1	526-3	<	>	0-805 (SE 0-039) reduction 2p < 0-00001
-∎ He	99% or	6 confidence inter ween 5 subto	rvals otals: $\chi^2_{-} =$	2-0;p>	0-1; N	с с	0.5	1.0	1.5 2.0
	Heterogeneity	within subto	tals: χ^2_A	= 46-8; p	> 0.1;	NS	Polychemo. bet	ter	Polychemo. worse
	Heterogeneity	between 47 ti	rials: $\chi_{46}^{\overline{2}}$	= 48-8; p	> 0.1;	NS	Treatment	effect	t 2p < 0⋅00001

† Chemotherapy plus tamoxifen versus same tamoxifen alone

Web Fig. 10(i). Tamoxifen versus not in ER-poor disease: trial details and recurrence rate ratios in each of 50 separate trials

† Tamoxifen plus chemotherapy versus same chemotherapy alone

Web Fig. 10(ii). Tamoxifen versus not in ER-poor disease: trial details and breast cancer mortality rate ratios in each of 50 separate trials

	Tamoxifen	Deaths/	Women	Tamoxif	en deaths	8	
Year code and study name	dose (mg/d) & duration (y)	Allocated Tam	Allocated control	Logrank Ö–E	Variance of O–E	, <u>Ratio of annual de</u> Tam : Cor	eath rates ntrol
(a) Tamoxifen for	average of up	to 2 (mea	an: 1.7) y	ears			
72J Copenhagen	30.2	37/80	34/67	-3.2	15.9		
74G2 Case Western A	+40 1	17/36	23/34	_4·7	8.8		
76G1458 Stockholm B	+40 2	21/45	22/47	-1-1	7.8		>
77E Danish BCG 77C	20.2	71/128	43/62 62/102	-7.0	28.0		_
77K NSABP B-09	+20 2	205/318	201/307	0.2	90·9		
78A ₂ S Swedish BCG	30 1	28/51	29/63	2.4	12.8	¥	>
78B1 Toronto-Edmont.	30 2	27/40	28/39	-0.5	12.3	o	
78C GUN Naples 78H Jappbruck	†30 2 20 1	25/73	32/65	-7-3	10.8		
78J ECOG EST1178	20 2	3/5	3/6	0.5	1.3		
78M NCCTG/Mayo Clin	nic † 20 1	64/109	64/103	-3.6	27.9		
78S12345 NKCC Japan 78V ECOC 5177/6177	+20 2 +20 1	39/322	43/325	-2.2	19.2		
79B1 SWOG 7827 A	+20 1	9/17	11/15	-2.1	4.6		>
79D1+2 GABG/HD Germa	iny †30 2	50/137	59/144	-2.4	24.7	D	
80E Toulouse France	30 2	5/14	4/14 25/54	0.3	1.5		•>
80P GABG 2 Germany	30 2	3/27	5/46	-0.1	1.3		>
80S Helsinki	+40 2	22/32	22/40	3.8	8.5		>
81A Montpellier France	e 302	0/7	4/9	-1.1	0.7 -		
82B1 Danish BCG 82b	+30 1	38/58	4/9	-2.9	17.3		
82H NBCG 1a Norway	20 2	2/2	1/1			-	
82L123456 ACETBC-1	†20 1 or 2	204/969	220/1027	-5.0	97.4	— — — —	-
82N Kumamoto	+20 2	2/28	1/26	0.0	0.5 -		<u> </u>
83E1+2 Oita	9 30 TOT3 +20 2	2/18	29/85 3/32	2.3	0.7		
84A1+5 GBSG 02 German	τy +30 2	25/56	26/55	-1.3	11.2		*
84Q4 Austrian BCSG 4	20 2	0/0	3/5				
84S1 Kawasaki 2 84U S/SE Sweden BC	†201 G 20/402	0/1 /3/90	0/1 //2/95	3.4	18-0		
85H8dfhkra ACETBC-2	+30 2	45/241	37/251	2.0	17.2		
85J123578 PetrovStPetersbig	† 20 1	9/26	9/21	-1-1	3.9		>
86F1 Osaka BCSG Jap	an 402	5/31	5/47	1.4	2.3		
87A1+2 ZIPP	+20 2	102/427	64/220	-7.0	34.6		
87E1 Oita	20 2	4/52	5/54	-0.3	2.1		>
89J2 CRCRAMS Mosc	ow †20 2	0/0	0/1		04.0	_	_
91J GBSG V German	v 30 2	0/7	0/5	4.4	24.8		
(a) subtotal	,	1356/	1346/	45 G	596 3		0.93 (s= 0.04)
		4040	3866	-43.0	300-3	4	reduction
		(33.6%)	(34-0%)				2p = 0.06
(b) Tamoxifen for	average of 3 o	r more (n	nean: 5)	years			
76G239ab Stockholm B	+40 2 or 5 20 5 or 10+	86/238 66/128	107/269 72/126	-5·4 -5·1	42·6 28·2		_
78F CRFB Caen C5	40 3	16/22	17/21	-1.2	6.8		
80H2 Marseille	† 30 3	6/12	4/10	1.2	1.9		÷
82%1 NSABP B-14	20 5 or 10 + 20 5	3/8	4/8 3/14	-0.1	1.5		~ ~ ~
83B GROCTA I Italy	+30 5	1/1	1/2	-0·4 -0·5	0.3 -		
86M2 CRFB Caen 002	30 5	6/19	2/5	0.3	1.5		·
86P2 FASG GFEA 02	+30 3	34/71	35/79	0.4	16.0		-
89F ECOG EST5188	+20 5	19/55	18/73	4.0	8.4		
91H NSABP B-23	20 5	127/999	134/1001	-3.2	63.7		
93C5+6 GABG 4 Germany	/ †?? 5	69/374	61/360	1.1	30.3		
93N IBCSG 13-93	T ((5	64/229	72/218	-7.5	31.9		_
(b) subtotal		620/	632/	_4.7	287.6		0.98 (se 0.06)
		2890	2921		207.0		reduction
		(21.5%)	(21.6%)				$2n > 0.1 \cdot NS$
		(,	(,				20 > 01, 10
Total (a + b)	1976/	1978/	-50.3	874.0	•	0.944 (SE 0.033)
	-	6930	6787			-	reduction
— 00% ar — 0	E0/ applidance int-	(20·5%)	(∠3·1%)				2p = 0.09
Difference betwe	ero contidence inte Sen	rvais -			0	0.5 1.0	1.5 2.0
treatment eff	ects in 2 subto	otals: $\chi_{\frac{1}{2}}^2$ =	= 0.7; 2p	> 0.1; N	IS	Tamoxifen better Ta	moxifen worse
Heterogenei	ty within subto	otals: χ^2_{47}	= 34.1; p) > 0.1;	NS	Treatment effect	2p = 0·09
Heterogeneit	y between 49 t	rials: χ ₄₈	= 34·8; p) > 0.1;	NS		

+ Tamoxifen plus chemotherapy versus same chemotherapy alone

Web Fig. 10(iii). Tamoxifen versus not in ER-poor disease: trial details and all-cause mortality rate ratios in each of 50 separate trials

+ Tamoxifen plus chemotherapy versus same chemotherapy alone

Web Fig. 11(i). Perioperative polychemotherapy (PeCT) versus no adjuvant cytotoxic in ER-poor disease, subdivided by nodal and menopausal status: trial details and recurrence rate ratios in each of 4 separate trials

		Events	Women	PeCT	events	Dette of our	
Year code and study name	Perioperative single cycle	Allocated PeCT	Allocated control	Logrank O–E	Variance of O-E	PeCT	: Control
(a) Premenopausal*							
81F3 IBCSG/Ludwig V N-	CMFFol	80/169	37/80	0.4	24.0		_
85C2 INRC Genova N-	FEC	3/20	10/20	-4·4	2.9 —	-	-
85W Hamburg N-	EC	2/23	8/34	-2.0	2.1 –		>
85W Hamburg N+	EC	11/17	11/20	1.7	4.2		├ →
86A1 EORTC 10854 N-	FAC	34/100	36/98	-1·6	16.3		
86A1 EORTC 10854 N+	FAC	13/22	19/28	-1·4	6.3	e	>
■ (a) subtotal		143/ 351 (40·7%)	121/ 280 (43·2%)	_7 ∙3	55.8	\triangleleft	0.88 (se 0.13) 2p = 0.33; NS
(b) Postmenopausal						1	
81F3 IBCSG/Ludwig V N-	CMFFol †	29/102	28/58	<i>–</i> 9·1	11.8		-
85C2 INRC Genova N-	FEC	4/15	2/18	0.8	1.5		·
85W Hamburg N-	EC	8/47	14/50	-2.7	5.2		
85W Hamburg N+	EC	15/36	14/25	-1.5	5.8		
86A1 EORTC 10854 N-	FAC	23/81	25/93	- 0 ·2	11.5		•>
86A1 EORTC 10854 N+	FAC	43/89	52/85	-7·3	20.3		
■ (b) subtotal		122/ 370 (33·0%)	135/ 329 (41·0%)	-20.0	56.1	\rightarrow	0·70 (se 0·11) _{2p = 0} .008
Total (a + b)		265/ 721 (36-8%)	256/ 609 (42·0%)	-27.3	111 .9	\diamond	0·784 (se 0·084) 2p = 0·010
- 99% or < 95% confid	lence intervals						
Difference between treatment effects in 2	subtotals: χ_1^2	² = 1·4; 2p	= 0·23; N	s	U	PeCT better	PeCT worse
Heterogeneity within	subtotals: χ_1^2	² ₀ = 13·5;	o > 0·1; N	s		Treatment ef	fect 2p = 0.010

* Includes perimenopausal (and age < 50 with unknown status)

† Hypothesis generator

Web Fig. 11(ii). Perioperative polychemotherapy (PeCT) versus no adjuvant cytotoxic in ER-poor disease, subdivided by nodal and menopausal status: trial details and breast cancer mortality rate ratios in each of 4 separate trials

	Deaths/Women PeCT deaths				deaths	Datia of annu	val daath vataa
Year code and study name	Perioperative single cycle	Allocated PeCT	Allocated control	Logrank O–E	Variance of O-E	PeCT	: Control
(a) Premenopausal*							
81F3 IBCSG/Ludwig V N-	CMFFol	51/169	28/80	-2.1	16.8		
85C2 INRC Genova <i>N</i> -	FEC	2/20	8/20	-3.3	2.3 —		<u> </u>
85W Hamburg N-	EC	2/23	5/34	- 0 ·7	1.4 -		
85W Hamburg N+	EC	7/17	4/20	2.0	2.5		
86A1 EORTC 10854 N-	FAC	24/100	22/98	1.3	11.1		.
86A1 EORTC 10854 N+	FAC	13/22	15/28	1.6	6.0		
■ (a) subtotal		99/ 351 (28-2%)	82/ 280 (29·3%)	-1·2	40.1	<	0.97 (se 0.16) 2p = 0.85; NS
<u>(b) Postmenopausal</u>							
81F3 IBCSG/Ludwig V N-	CMFFol †	26/102	23/58	-5.5	10.6		
85C2 INRC Genova N-	FEC	2/15	2/18	0.0	1.0 -		>
85W Hamburg N-	EC	4/47	6/50	-0.4	2.4		>
85W Hamburg N+	EC	9/36	7/25	-0·1	3.5		>
86A1 EORTC 10854 N-	FAC	16/81	18/93	-0.4	8.2		
86A1 EORTC 10854 N+	FAC	40/89	49/85	-7.7	19.8		<u> </u>
■ (b) subtotal		97/ 370 (26·2%)	105/ 329 (31·9%)	-14.1	45 ∙5	\rightarrow	0.73 (se 0.13) 2p = 0.04
■ Total (a + b)		196/ 721 (27·2%)	187/ 609 (30·7%)	-15-3	85.6	\Leftrightarrow	> 0.836 (se 0.099) 2p = 0.10
- 99% or - 95% confid	lence intervals				 0	0.5 1	<u> </u>
treatment effects in 2	subtotals: χ_1^2	² = 1·7; 2p	-	PeCT better	PeCT worse		
Heterogeneity within	subtotals: χ_1^2	Treatment e	ffect 2p = 0·10				

* Includes perimenopausal (and age < 50 with unknown status)

† Hypothesis generator

Web Fig. 11(iii). Perioperative polychemotherapy (PeCT) versus no adjuvant cytotoxic in ER-poor disease, subdivided by nodal and menopausal status: trial details and all-cause mortality rate ratios in each of 4 separate trials

		Deaths/wo	man-years	PeCT	deaths	Datia of sum	
Year code and study name	Perioperative single cycle	Allocated PeCT	Allocated control	Logrank O–E	Variance of O-E	PeCT	: Control
<u>(a) Premenopausal*</u>							
81F3 IBCSG/Ludwig V N-	CMFFol	56/2339	28/1148	-0.4	17·9		
85C2 INRC Genova N-	FEC	2/136	8/125	-3.3	2.3 —	•	<u> </u>
85W Hamburg N-	EC	2/146	5/154	-0.7	1.4 —	•	>
85W Hamburg N+	EC	7/49	4/65	2.0	2.5		
86A1 EORTC 10854 N-	FAC	24/961	22/936	1.3	11.1		• •
86A1 EORTC 10854 N+	FAC	14/129	16/192	1.7	6.4		·>
■ (a) subtotal		105/ 3760 (2·8%/y)	83/ 2620 (3·2%/y)	0.6	41.6	<	1·01 (se 0·16) 2p = 0·93; NS adverse
(b) Postmenopausal						ł	
81F3 IBCSG/Ludwig V N-	CMFFol †	42/1454	31/734	-5.7	15.7	=	<u> </u>
85C2 INRC Genova N-	FEC	2/99	2/96	0.0	1.0 –		→
85W Hamburg N-	EC	4/225	6/275	-0.4	2.4		
85W Hamburg N+	EC	9/118	7/78	-0·1	3.5		
86A1 EORTC 10854 N-	FAC	17/797	24/838	- 3 ·7	9.9		
86A1 EORTC 10854 N+	FAC	43/637	49/549	-6.3	2 0 ·5		
■ (b) subtotal		117/ 3330 (3·5%/y)	119/ 2570 (4·6%/y)	-16-2	53·0	$\langle \rangle$	0·74 (se 0·12) 2p = 0·03
■ Total (a + b)		222/ 7090 (3·1%/y)	202/ 5190 (3∙9%/y)	-15.6	94-6	\Leftrightarrow	> 0.848 (se 0.095) 2p = 0.11; NS
99% or < - 95% confic Difference between treatment effects in 2	lence intervals ${f subtotals}: \chi^2$	² = 2·4; 2p	= 0·12; N	s	0	0.5 1 ReCT better	
Heterogeneity within	subtotals: χ^2	² 10 = 7·8; p	> 0 1; NS			Treatment effe	r = 0.11; NS

* Includes perimenopausal (and age < 50 with unknown status)

† Hypothesis generator