Aromatase inhibitors versus tamoxifen in pre-menopausal women with ER+ early stage breast cancer treated with ovarian suppression: A patient level meta-analysis of 7,030 women in four randomised trials

Background

- Tamoxifen reduces 15-year breast cancer mortality by one third in ER+ disease (EBCTCG Lancet 2011)

- Aromatase inhibitors (AIs) are even more effective than tamoxifen in post-menopausal women (EBCTCG Lancet 2015)

- AIs may benefit pre-menopausal women treated with ovarian suppression (OFS)
Methods

• Meta-analysis of individual patient data for 4 trials of pre-menopausal women with early stage breast cancer treated with OFS, randomised to AI or tamoxifen

• Primary outcomes were recurrence and cause specific mortality analysed by standard EBCTCG* methods

• 2p<0.05 for primary outcomes
• 2p<0.01 for subgroup analyses

*EBCTCG 1990
<table>
<thead>
<tr>
<th>Trial</th>
<th>Year started</th>
<th>Comparison</th>
<th>N</th>
<th>Median FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCSG 12</td>
<td>1999</td>
<td>Goserelin: (anastrozole vs tamoxifen) ± zoledronic acid x 3yrs</td>
<td>1694</td>
<td>8.0yrs</td>
</tr>
<tr>
<td>TEXT</td>
<td>2003</td>
<td>Triptorelin: (exemestane vs tamoxifen) x 5yrs</td>
<td>2635</td>
<td>9.1yrs</td>
</tr>
<tr>
<td>SOFT</td>
<td>2003</td>
<td>Triptorelin: (exemestane vs tamoxifen) x 5yrs</td>
<td>1998</td>
<td>7.9yrs</td>
</tr>
<tr>
<td>HOBOE</td>
<td>2004</td>
<td>Triptorelin: (letrozole vs tamoxifen) x 5yrs</td>
<td>703</td>
<td>5.3yrs</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7030</td>
<td>8.0yrs</td>
</tr>
</tbody>
</table>
Chemotherapy by trial

- **ABCSG 12**: only neo-adjuvant allowed (5%)

- **TEXT**: optional, concurrently with OFS (60%)

- **SOFT**: before randomisation but patient had to remain pre-menopausal after completion (54%)

- **HOBOE**: before randomisation (63%)
Recurrence

7030 women
(40% N+)

RR 0.79 (0.69–0.90)
Logrank 2p = 0.0005
10–y gain 2.8% (CI 0.6 – 5.0)

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Recurrence

Preliminary findings presented at San Antonio Breast Cancer Symposium®, December 8th 2021

The content is subject to change, has not been subject to independent peer review and should not be used for clinical decision making or guidelines until relevant results have been published.

<table>
<thead>
<tr>
<th>Year code and study name</th>
<th>Treatment comparison</th>
<th>Events/Women</th>
<th>Al events</th>
<th>Ratio of annual event rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alised Al Tam</td>
<td>Logrank</td>
<td>Variance of O-E</td>
</tr>
<tr>
<td>99B1:2 Austrian BCSG XII</td>
<td>Gos:(Ana vs Tam)±Zol 3yr</td>
<td>114/855</td>
<td>103/839</td>
<td>2.9</td>
</tr>
<tr>
<td>03< TEXT / IBCSG 25–02</td>
<td>Trip;(Exe vs Tam) 5yr</td>
<td>137/1324</td>
<td>195/1311</td>
<td>-35.9</td>
</tr>
<tr>
<td>03E SOFT / IBCSG 24–02</td>
<td>Trip;(Exe vs Tam) 5yr</td>
<td>115/999</td>
<td>139/999</td>
<td>-11.2</td>
</tr>
<tr>
<td>041.5 IT Naples HOBOE</td>
<td>Trip;(Let vs Tam) 5yr</td>
<td>38/350</td>
<td>47/353</td>
<td>-6.8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404/3528</td>
<td>484/3502</td>
<td>-51.0</td>
</tr>
</tbody>
</table>

- 99% or <-> 95% confidence intervals

Heterogeneity between 4 trials: \(\chi^2 = 8.4; p = 0.04 \)

AI better

Tam better

Treatment effect 2p = 0.0005

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Recurrence by follow up period

<table>
<thead>
<tr>
<th>Category</th>
<th>Events/woman-years Allocated AI</th>
<th>Allocated Tam</th>
<th>Logrank Variance of O-E</th>
<th>Ratio of annual event rates</th>
<th>Ratio AI : Tam</th>
<th>Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>95/6836 (1.4% y)</td>
<td>108/6789 (1.6% y)</td>
<td>-7.7</td>
<td>0.85</td>
<td>0.85</td>
<td>(0.59–1.23)</td>
</tr>
<tr>
<td>2–4</td>
<td>142/9392 (1.5% y)</td>
<td>224/9122 (2.5% y)</td>
<td>-45.2</td>
<td>0.60</td>
<td>0.60</td>
<td>(0.46–0.79)</td>
</tr>
<tr>
<td>5–9</td>
<td>158/8975 (1.8% y)</td>
<td>150/8613 (1.7% y)</td>
<td>-1.2</td>
<td>0.74</td>
<td>0.74</td>
<td>(0.57–0.91)</td>
</tr>
<tr>
<td>10+</td>
<td>9/462 (1.9% y)</td>
<td>2/444 (0.5% y)</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404/25665 (1.6% y)</td>
<td>484/24968 (1.9% y)</td>
<td>-51.0</td>
<td>0.788</td>
<td>0.788</td>
<td>(0.689–0.901)</td>
</tr>
</tbody>
</table>

- 99% or ← 95% confidence intervals

Heterogeneity between 4 categories: $\chi^2_3 = 16.0; p = 0.001$

Treatment effect $2p = 0.0005$

Test for trend: $\chi^2_1 = 3.1; 2p = 0.08$

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Preliminary findings presented at San Antonio Breast Cancer Symposium®, December 8th 2021. The content is subject to change, has not been subject to independent peer review and should not be used for clinical decision making or guidelines until relevant results have been published.

Distant recurrence

7030 women

RR 0.83 (0.71–0.97)
Logrank 2p = 0.02
10–y gain 1.9% (CI 0.0 – 3.8)

BC mortality

7030 women

RR 1.01 (0.82–1.24)
Logrank 2p = 0.94
10–y gain 0.4% (CI –1.2 – 1.9)
Breast cancer mortality by follow up period

<table>
<thead>
<tr>
<th>Category</th>
<th>Events/Women Allocated</th>
<th>Events/Tam Allocated</th>
<th>AI events Logrank Variance O-E</th>
<th>Ratio of annual event rates Ratio Al : Tam</th>
<th>Ratio (& CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up period, years (trend $\chi^2_1 = 3.4; 2p = 0.07$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>15/6900 (0.2%)</td>
<td>9/6876 (0.1%)</td>
<td>2.6</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>2–4</td>
<td>85/9738 (0.9%)</td>
<td>69/9651 (0.7%)</td>
<td>7.1</td>
<td>37.5</td>
<td>1.21 (0.79 – 1.84)</td>
</tr>
<tr>
<td>5–9</td>
<td>81/9546 (0.8%)</td>
<td>98/9505 (1.0%)</td>
<td>-9.6</td>
<td>43.5</td>
<td>0.80 (0.54 – 1.19)</td>
</tr>
<tr>
<td>10+</td>
<td>4/513 (0.8%)</td>
<td>3/512 (0.6%)</td>
<td>0.6</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

- 99% confidence intervals

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Subgroup analyses by any recurrence

- 13 analyses investigating possible variability (so p<0.01 for significance)

- Proportional reduction in recurrence did not vary by age, BMI, tumour size, tumour grade, histological subtype, or presence/absence of chemotherapy
Recurrence by nodal status

<table>
<thead>
<tr>
<th>Category</th>
<th>Events/Women Allocated</th>
<th>AI events Allocated</th>
<th>Ratio of annual event rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI</td>
<td>Tam</td>
<td>Ratio AI : Tam</td>
</tr>
<tr>
<td>N0</td>
<td>144/2132 (6.8%)</td>
<td>188/2999 (9.0%)</td>
<td>-27.3</td>
</tr>
<tr>
<td>N1–3</td>
<td>135/1014 (13.3%)</td>
<td>182/1049 (17.3%)</td>
<td>-25.9</td>
</tr>
<tr>
<td>N4+</td>
<td>124/379 (32.7%)</td>
<td>114/350 (32.6%)</td>
<td>1.7</td>
</tr>
<tr>
<td>N unknown</td>
<td>1/3 (33.3%)</td>
<td>0/4 (0.0%)</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>404/3528 (11.5%)</td>
<td>484/3502 (13.8%)</td>
<td>-51.0</td>
</tr>
</tbody>
</table>

2p = 0.0005

- Heterogeneity between 3 categories: $\chi^2 = 5.5; p = 0.06$
- Al better
- Tam better

Test for trend: $\chi^2 = 3.9; 2p = 0.05$

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Recurrence by nodal status*

N0

- RR 0.71 (0.57–0.89)
- Logrank 2p = 0.002
- 10-y gain 2.4% (CI -0.5 – 5.4)

N1-3

- RR 0.72 (0.58–0.91)
- Logrank 2p = 0.005
- 10-y gain 4.8% (CI -0.4 – 10.0)

*Smoothed from 5 years

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Bone fractures

Non-breast cancer death

Preliminary findings presented at San Antonio Breast Cancer Symposium®, December 8th 2021. The content is subject to change, has not been subject to independent peer review and should not be used for clinical decision making or guidelines until relevant results have been published.

This presentation is the intellectual property of the author/presenter. Contact them at Rosie.Bradley@ndph.ox.ac.uk for permission to reprint and/or distribute.
Conclusions

• Using AI rather than tamoxifen, in pre-menopausal women receiving OFS, reduces the risk of breast cancer recurrence by ~21%
• Reduction in distant recurrence (17%) but no effect on breast cancer mortality or overall survival – longer FU needed
• No increase in non-breast cancer deaths
• More fractures in women receiving AI
Acknowledgements

The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)

Trialists who shared their data

7,030 women in 4 trials

The funding bodies