Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates. For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies.

Original publication

DOI

10.1289/ehp.95103s8245

Type

Journal article

Journal

Environ Health Perspect

Publication Date

11/1995

Volume

103 Suppl 8

Pages

245 - 249

Keywords

Adult, Child, Environmental Exposure, Female, Follow-Up Studies, Forecasting, Humans, Japan, Male, Middle Aged, Neoplasms, Radiation-Induced, Power Plants, Radiation, Ionizing, Radioactive Fallout, Radioactive Hazard Release, Radiotherapy, Radon, Research, Risk Factors, Ukraine